A note on n! modulo p

被引:0
|
作者
M. Z. Garaev
J. Hernández
机构
[1] Universidad Nacional Autónoma de México,Centro de Ciencias Matemáticas
来源
关键词
Factorials; Congruences; Exponential and character sums; Additive combinatorics; 11L03; 11L40; 11B75; 11B50;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a prime, ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document} and 0<L+1<L+N<p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<L+1<L+N < p$$\end{document}. We prove that if p1/2+ε<N<p1-ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{1/2+\varepsilon }< N <p^{1-\varepsilon }$$\end{document}, then #{n!(modp);L+1≤n≤L+N}>c(NlogN)1/2,c=c(ε)>0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \#\{n!\,\,({\mathrm{mod}} \,p);\,\, L+1\le n\le L+N\} > c (N\log N)^{1/2},\,\, c=c(\varepsilon )>0. \end{aligned}$$\end{document}We use this bound to show that any λ≢0(modp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \not \equiv 0\ ({\mathrm{mod}}\, p)$$\end{document} can be represented in the form λ≡n1!⋯n7!(modp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \equiv n_1!\cdots n_7!\ ({\mathrm{mod}}\, p)$$\end{document}, where ni=o(p11/12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_i=o(p^{11/12})$$\end{document}. This refines the previously known range for ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_i$$\end{document}.
引用
收藏
页码:23 / 31
页数:8
相关论文
共 50 条
  • [41] The distribution of αp modulo one
    Heath-Brown, DR
    Jia, C
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 84 : 79 - 104
  • [42] ON THE QUADRATIC FORMULA MODULO n
    Wright, Steve
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2007, 7 (01): : 33 - 68
  • [43] A simple congruence modulo p
    Kohnen, W
    AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (05): : 444 - 445
  • [44] Distribution of residues modulo p
    Gun, S.
    Luca, Florian
    Rath, P.
    Sahu, B.
    Thangadurai, R.
    ACTA ARITHMETICA, 2007, 129 (04) : 325 - 333
  • [45] The distribution of αp modulo one
    Matomaki, Kaisa
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 147 : 267 - 283
  • [46] Sums of fractions modulo p
    C. A. Díaz
    M. Z. Garaev
    Archiv der Mathematik, 2016, 106 : 337 - 344
  • [47] Bell Numbers Modulo p
    Gallardo, Luis Henri
    APPLIED MATHEMATICS E-NOTES, 2023, 23 : 40 - 48
  • [48] On the distribution of (CnDn) modulo p
    Moshe, Yossi
    ACTA ARITHMETICA, 2007, 127 (03) : 249 - 271
  • [49] On the distribution of αpγ + β modulo one
    Dunn, Alexander
    JOURNAL OF NUMBER THEORY, 2017, 176 : 67 - 75
  • [50] THE RESIDUES OF NN MODULO P
    SOMER, L
    FIBONACCI QUARTERLY, 1981, 19 (02): : 110 - 117