A note on n! modulo p

被引:0
|
作者
M. Z. Garaev
J. Hernández
机构
[1] Universidad Nacional Autónoma de México,Centro de Ciencias Matemáticas
来源
关键词
Factorials; Congruences; Exponential and character sums; Additive combinatorics; 11L03; 11L40; 11B75; 11B50;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a prime, ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document} and 0<L+1<L+N<p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<L+1<L+N < p$$\end{document}. We prove that if p1/2+ε<N<p1-ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{1/2+\varepsilon }< N <p^{1-\varepsilon }$$\end{document}, then #{n!(modp);L+1≤n≤L+N}>c(NlogN)1/2,c=c(ε)>0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \#\{n!\,\,({\mathrm{mod}} \,p);\,\, L+1\le n\le L+N\} > c (N\log N)^{1/2},\,\, c=c(\varepsilon )>0. \end{aligned}$$\end{document}We use this bound to show that any λ≢0(modp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \not \equiv 0\ ({\mathrm{mod}}\, p)$$\end{document} can be represented in the form λ≡n1!⋯n7!(modp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \equiv n_1!\cdots n_7!\ ({\mathrm{mod}}\, p)$$\end{document}, where ni=o(p11/12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_i=o(p^{11/12})$$\end{document}. This refines the previously known range for ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_i$$\end{document}.
引用
收藏
页码:23 / 31
页数:8
相关论文
共 50 条
  • [1] A note on n! modulo p
    Garaev, M. Z.
    Hernandez, J.
    MONATSHEFTE FUR MATHEMATIK, 2017, 182 (01): : 23 - 31
  • [2] A note on cubic residues modulo n
    Ramesh, V. P.
    Gowtham, R.
    Sinha, Saswati
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (01): : 62 - 65
  • [3] Note on taking square-roots modulo N
    Univ of Wisconsin-Madison, Madison, United States
    IEEE Trans Inf Theory, 2 (807-809):
  • [4] Note on taking square-roots modulo N
    Bach, E
    Huber, K
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) : 807 - 809
  • [5] A note on the Mordell-Weil rank modulo n
    Dokchitser, Tim
    Dokchitser, Vladimir
    JOURNAL OF NUMBER THEORY, 2011, 131 (10) : 1833 - 1839
  • [6] On transitive differentiable modulo p(n) functions
    Ivachev, Artyom S.
    GROUPS COMPLEXITY CRYPTOLOGY, 2015, 7 (02) : 183 - 190
  • [7] The residue of p(N) modulo small primes
    Ono, K
    RAMANUJAN JOURNAL, 1998, 2 (1-2): : 47 - 54
  • [8] The Residue of p(N) Modulo Small Primes
    Ken Ono
    The Ramanujan Journal, 1998, 2 : 47 - 54
  • [9] A NOTE ON THE MODULO OPERATION
    CHANG, AP
    SIGPLAN NOTICES, 1985, 20 (04): : 19 - 23
  • [10] A note on some relations among special sums of reciprocals modulo p
    Skula, Ladislav
    MATHEMATICA SLOVACA, 2008, 58 (01) : 5 - 10