A Classification of Quasi-Newton Methods

被引:1
|
作者
C. Brezinski
机构
[1] Université des Sciences et Technologies de Lille,Laboratoire de Mathématiques Appliquées, FRE CNRS 2222, UFR de Mathématiques Pures et Appliquées
来源
Numerical Algorithms | 2003年 / 33卷
关键词
nonlinear equations; quasi-Newton methods;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider quasi-Newton methods of the form xk+1=xk+Λkf(xk), k=0,1,. . . , for the solution of the system of nonlinear equations f(x)=0. We present a classification of such methods based on different structures for the matrix Λk and various criteria for its computation, issued from three different formulae. Many known methods can be put into this framework and new methods are also obtained.
引用
收藏
页码:123 / 135
页数:12
相关论文
共 50 条
  • [31] Quasi-Newton methods for multiobjective optimization problems
    Morovati, Vahid
    Basirzadeh, Hadi
    Pourkarimi, Latif
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2018, 16 (03): : 261 - 294
  • [32] Newton and Quasi-Newton Methods for Normal Maps with Polyhedral Sets
    J. Han
    D. Sun
    Journal of Optimization Theory and Applications, 1997, 94 : 659 - 676
  • [33] Newton and quasi-Newton methods for normal maps with polyhedral sets
    Han, J
    Sun, D
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 94 (03) : 659 - 676
  • [34] Smoothing Newton and quasi-Newton methods for mixed complementarity problems
    Li, DH
    Fukushima, M
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2000, 17 (2-3) : 203 - 230
  • [35] Projective Approximation Based Quasi-Newton Methods
    Senov, Alexander
    MACHINE LEARNING, OPTIMIZATION, AND BIG DATA, MOD 2017, 2018, 10710 : 29 - 40
  • [36] ON THE BEHAVIOR OF BROYDENS CLASS OF QUASI-NEWTON METHODS
    Byrd, Richard H.
    Liu, Dong C.
    Nocedal, Jorge
    SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (04) : 533 - 557
  • [37] Quasi-Newton parallel geometry optimization methods
    Burger, Steven K.
    Ayers, Paul W.
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (03):
  • [38] Implicit updates in multistep quasi-Newton methods
    Ford, JA
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (8-9) : 1083 - 1091
  • [39] Adjusting the BFGS update for quasi-Newton methods
    Hassan, Basim Abbas
    Mohammed, Ahmed W.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2025, 28 (01) : 31 - 41
  • [40] Parallel quasi-Newton methods for unconstrained optimization
    Byrd, Richard H.
    Schnabel, Robert B.
    Shultz, Gerald A.
    Mathematical Programming, Series B, 1988, 42 (01): : 273 - 306