Ground State Solution of Kirchhoff Problems with Hartree Type Nonlinearity

被引:0
|
作者
Linjie Wang
Haidong Liu
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Jiaxing University,College of Data Science
[3] Jiaxing University,Institute of Mathematics
来源
Qualitative Theory of Dynamical Systems | 2022年 / 21卷
关键词
Kirchhoff type equation; Ground state solution; Nehari manifold; Concentration compactness argument; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
For the Kirchhoff type equation -a+b∫R3∇u2dxΔu+V(x)u=(Iα∗|u|p)|u|p-2uinR3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\left( a+b\int _{\mathbb {R}^3}\left| \nabla u\right| ^2\,dx\right) \Delta u+V(x)u = (I_{\alpha }*|u|^p) |u|^{p-2}u\ \ \text {in}\ \mathbb {R}^3, \end{aligned}$$\end{document}where a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,\,b>0$$\end{document}, 0<α<3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha <3$$\end{document}, 2<p<3+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<3+\alpha $$\end{document} and Iα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_\alpha $$\end{document} is the Riesz potential, we establish the existence of a positive ground state solution by using Nehari manifold technique and concentration compactness argument. The main novelty in our context is that the potential V exhibits a mixed behavior, i.e., V is periodic in some directions while tends to a positive constant in the remaining ones.
引用
收藏
相关论文
共 50 条
  • [31] Ground-State Solutions to a Hartree–Fock Type System with a 3-Lower Nonlinearity
    Zushun Min
    Yuhua Li
    Xiaoli Zhu
    Qualitative Theory of Dynamical Systems, 2024, 23
  • [32] Existence and concentration of ground state solutions for a class of Kirchhoff-type problems
    Lin, Xiaoyan
    Wei, Jiuyang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
  • [33] POSITIVE GROUND STATE SOLUTIONS FOR SOME NON -AUTONOMOUS KIRCHHOFF TYPE PROBLEMS
    Xie, Qilin
    Ma, Shiwang
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (01) : 329 - 350
  • [34] Existence of ground state solutions for fractional Kirchhoff Choquard problems with critical Trudinger-Moser nonlinearity
    Deng, Shengbing
    Xiong, Sihui
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (01):
  • [35] Ground states for the nonlinear Kirchhoff type problems
    Zhang, Hui
    Zhang, Fubao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) : 1671 - 1692
  • [36] Existence and concentration of ground state solutions for critical Kirchhoff-type equation involving Hartree-type nonlinearities
    Yin, Lifeng
    Gan, Wenbin
    Jiang, Shuai
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03):
  • [37] Existence and concentration of ground state solutions for critical Kirchhoff-type equation involving Hartree-type nonlinearities
    Lifeng Yin
    Wenbin Gan
    Shuai Jiang
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [38] Ground state solutions of Nehari–Pohozaev type for Kirchhoff-type problems with general potentials
    X. H. Tang
    Sitong Chen
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [39] Nehari-type ground state solutions for Kirchhoff type problems in R-N
    Cheng, Bitao
    Li, Guofa
    Tang, Xianhua
    APPLICABLE ANALYSIS, 2019, 98 (07) : 1255 - 1266
  • [40] Multiple solutions for a class of Kirchhoff type problems with concave nonlinearity
    Bitao Cheng
    Xian Wu
    Jun Liu
    Nonlinear Differential Equations and Applications NoDEA, 2012, 19 : 521 - 537