Ground State Solution of Kirchhoff Problems with Hartree Type Nonlinearity

被引:0
|
作者
Linjie Wang
Haidong Liu
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Jiaxing University,College of Data Science
[3] Jiaxing University,Institute of Mathematics
关键词
Kirchhoff type equation; Ground state solution; Nehari manifold; Concentration compactness argument; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
For the Kirchhoff type equation -a+b∫R3∇u2dxΔu+V(x)u=(Iα∗|u|p)|u|p-2uinR3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\left( a+b\int _{\mathbb {R}^3}\left| \nabla u\right| ^2\,dx\right) \Delta u+V(x)u = (I_{\alpha }*|u|^p) |u|^{p-2}u\ \ \text {in}\ \mathbb {R}^3, \end{aligned}$$\end{document}where a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,\,b>0$$\end{document}, 0<α<3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha <3$$\end{document}, 2<p<3+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<3+\alpha $$\end{document} and Iα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_\alpha $$\end{document} is the Riesz potential, we establish the existence of a positive ground state solution by using Nehari manifold technique and concentration compactness argument. The main novelty in our context is that the potential V exhibits a mixed behavior, i.e., V is periodic in some directions while tends to a positive constant in the remaining ones.
引用
收藏
相关论文
共 50 条
  • [1] Ground State Solution of Kirchhoff Problems with Hartree Type Nonlinearity
    Wang, Linjie
    Liu, Haidong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [2] Ground State Solutions for Kirchhoff-type Problems with Critical Nonlinearity
    Ye, Yiwei
    TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (01): : 63 - 79
  • [3] The Concentration Behavior of Ground States for a Class of Kirchhoff-type Problems with Hartree-type Nonlinearity
    Gu, Guangze
    Tang, Xianhua
    ADVANCED NONLINEAR STUDIES, 2019, 19 (04) : 779 - 795
  • [4] ON GROUND STATE SOLUTIONS FOR THE NONLINEAR KIRCHHOFF TYPE PROBLEMS WITH A GENERAL CRITICAL NONLINEARITY
    Xie, Weihong
    Chen, Haibo
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 53 (02) : 519 - 545
  • [5] Ground state solution for a class of Kirchhoff-type equation with general convolution nonlinearity
    Zhou, Li
    Zhu, Chuanxi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [6] Ground state solution for a class of Kirchhoff-type equation with general convolution nonlinearity
    Li Zhou
    Chuanxi Zhu
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [7] Existence and concentration of nontrivial nonnegative ground state solutions to Kirchhoff-type system with Hartree-type nonlinearity
    Li, Fuyi
    Gao, Chunjuan
    Liang, Zhanping
    Shi, Junping
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (06):
  • [8] Existence and concentration of nontrivial nonnegative ground state solutions to Kirchhoff-type system with Hartree-type nonlinearity
    Fuyi Li
    Chunjuan Gao
    Zhanping Liang
    Junping Shi
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [9] Ground state solutions for Kirchhoff-type problems with convolution nonlinearity and Berestycki–Lions type conditions
    Die Hu
    Xianhua Tang
    Shuai Yuan
    Qi Zhang
    Analysis and Mathematical Physics, 2022, 12
  • [10] Ground state solutions of Pohozaev type for Kirchhoff-type problems with general convolution nonlinearity and variable potential
    Zhang, Qiongfen
    Xie, Hai
    Jiang, Yi-rong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (11) : 11757 - 11779