Design of Ensemble Fuzzy-RBF Neural Networks Based on Feature Extraction and Multi-feature Fusion for GIS Partial Discharge Recognition and Classification

被引:0
|
作者
Kun Zhou
Sung-Kwun Oh
Jianlong Qiu
机构
[1] The University of Suwon,Department of Electrical Engineering
[2] The University of Suwon,School of Electrical and Electronic Engineering
[3] Linyi University,Research Center for Big Data and Artificial Intelligence
[4] Linyi University,School of Automation and Electrical Engineering
[5] Linyi University,Key Laboratory of Complex Systems and Intelligent Computing in University of Shandong
关键词
Partial discharge; Multi-feature fusion strategy; Ensemble fuzzy-radial basis function neural networks; Hard/fuzzy C-means;
D O I
暂无
中图分类号
学科分类号
摘要
A new topology of ensemble fuzzy-radial basis function neural networks (EFRBFNN) based on a multi-feature fusion strategy is proposed to recognize and classify a pattern of reliable on-site partial discharge (PD). This study is concerned with the design of an ensemble neural networks based on fuzzy rules and the enhancement of its recognition capability with the aid of preprocessing technologies and multi-feature fusion strategy. The key points are summarized as follows: (1) principal component analysis (PCA) and linear discriminant analysis (LDA) algorithm are utilized to reduce the dimensionality of input space as well as extracting features. (2) statistical characteristics (SC) are obtained as the complementary characteristics of the PD. (3) the proposed network architecture consists of two-branch radial basis function neural networks (RBFNN) based on fuzzy rules, which can effectively reflect the distribution of the input data. Two types of RBFNN are designed which are based on hard c-means (HCM) and fuzzy c-means (FCM) clustering respectively. To fuse the learned features by PCA and LDA, we design a multi-feature fusion strategy that not only adjusts the contribution of different features to the networks but also enhances the recognition ability for PD. The performance of the proposed networks is evaluated using PD data obtained from four types of defects in the laboratory environment, and noise that might occur in power grids is also concerned. The experimental results of the proposed EFRBFNN show the satisfied recognition requirement for PD datasets.
引用
收藏
页码:513 / 532
页数:19
相关论文
共 50 条
  • [21] Near-Infrared Random Forest Classification and Recognition Based on Multi-Feature Fusion
    Xie, Xi-Ru
    Luo, Hai-Jun
    Li, Guo-Nan
    Fan, Xin-Yan
    Wang, Kang-Yu
    Li, Zhong-Hong
    Wang, Jie
    Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2024, 44 (10): : 2858 - 2864
  • [22] Convolutional neural network and multi-feature fusion for automatic modulation classification
    Wu, Hao
    Li, Yaxing
    Zhou, Liang
    Meng, Jin
    ELECTRONICS LETTERS, 2019, 55 (16) : 895 - +
  • [23] A new multi-feature fusion based convolutional neural network for facial expression recognition
    Zou, Wei
    Zhang, Dong
    Lee, Dah-Jye
    APPLIED INTELLIGENCE, 2022, 52 (03) : 2918 - 2929
  • [24] Acoustic Scene Classification using Convolutional Neural Networks and Multi-Scale Multi-Feature Extraction
    Dang, An
    Vu, Toan H.
    Wang, Jia-Ching
    2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2018,
  • [25] Traffic lights detection and recognition based on multi-feature fusion
    Wenhao Wang
    Shanlin Sun
    Mingxin Jiang
    Yunyang Yan
    Xiaobing Chen
    Multimedia Tools and Applications, 2017, 76 : 14829 - 14846
  • [26] Traffic lights detection and recognition based on multi-feature fusion
    Wang, Wenhao
    Sun, Shanlin
    Jiang, Mingxin
    Yan, Yunyang
    Chen, Xiaobing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (13) : 14829 - 14846
  • [27] SAR image classification based on multi-feature fusion decision convolutional neural network
    Guo, Liang
    IET IMAGE PROCESSING, 2022, 16 (01) : 1 - 10
  • [28] Medical brain image classification based on multi-feature fusion of convolutional neural network
    Wang, Dan
    Zhao, Hongwei
    Li, Qingliang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (01) : 127 - 137
  • [29] A new multi-feature fusion based convolutional neural network for facial expression recognition
    Wei Zou
    Dong Zhang
    Dah-Jye Lee
    Applied Intelligence, 2022, 52 : 2918 - 2929
  • [30] Human behavior recognition based on multi-feature fusion of image
    Xu Song
    Hongyu Zhou
    Guoying Liu
    Cluster Computing, 2019, 22 : 9113 - 9121