The Quantum Black-Box Complexity of Majority

被引:0
|
作者
机构
[1] Department of Mathematics,
[2] University of Chicago,undefined
[3] 5734 S. University Avenue,undefined
[4] Chicago,undefined
[5] IL 60637,undefined
[6] USA. hayest@math.uchicago.edu.,undefined
[7] Department of Computer Science,undefined
[8] University of Chicago,undefined
[9] 1100 E. 58th Street,undefined
[10] Chicago,undefined
[11] IL 60637,undefined
[12] USA. kutin@cs.uchicago.edu.,undefined
[13] Computer Sciences Department,undefined
[14] University of Wisconsin,undefined
[15] 1210 W. Dayton Street,undefined
[16] Madison,undefined
[17] WI 53706,undefined
[18] USA. dieter@cs.wisc.edu.,undefined
来源
Algorithmica | 2002年 / 34卷
关键词
Key words. Majority function, Quantum computing, Query complexity, Las Vegas algorithms.;
D O I
暂无
中图分类号
学科分类号
摘要
Abstract. We describe a quantum black-box network computing the majority of N bits with zero-sided error ɛ using only \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\frac{2}{3} N + O(\sqrt{\smash{N \log (\varepsilon^{-1} \log N)}}})$ \end{document} queries: the algorithm returns the correct answer with probability at least 1 - ɛ , and ``I don't know'' otherwise. Our algorithm is given as a randomized ``XOR decision tree'' for which the number of queries on any input is strongly concentrated around a value of at most 2/3N . We provide a nearly matching lower bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\frac{2}{3} N - O( \sqrt{{\smash{N}}})$ \end{document} on the expected number of queries on a worst-case input in the randomized XOR decision tree model with zero-sided error o(1) . Any classical randomized decision tree computing the majority on N bits with zero-sided error 1/2 has cost N .
引用
收藏
页码:480 / 501
页数:21
相关论文
共 50 条