An improved multi-objective evolutionary optimization algorithm with inverse model for matching sensor ontologies

被引:0
|
作者
Xingsi Xue
Chao Jiang
Haolin Wang
Pei-Wei Tsai
Guojun Mao
Hai Zhu
机构
[1] Fujian University of Technology,Fujian Provincial Key Laboratory of Big Data Mining and Applications
[2] Fujian University of Technology,Intelligent Information Processing Research Center
[3] Fujian University of Technology,School of Computer Science and Mathematics
[4] Guilin University of Electronic Technology,Guangxi Key Laboratory of Automatic Detecting Technology and Instruments
[5] Swinburne University of Technology,Department of Computer Science and Software Engineering
[6] Zhoukou Normal University,School of Network Engineering
来源
Soft Computing | 2021年 / 25卷
关键词
Sensor ontology matching; Multi-objective evolutionary algorithm; Inverse modeling;
D O I
暂无
中图分类号
学科分类号
摘要
To address the heterogeneity problem of sensor data, it is necessary to conduct the Sensor Ontology Matching (SOM) process to find the mappings among diverse sensor data with the same semantics connotation. Currently, many Multi-Objective Evolutionary Algorithms (MOEAs) have been used to match the ontologies, which aim at finding a set of solutions called Pareto Set (PS) in the Pareto Front (PF) to represent a set of trade-off proposals for different Decision Makers (DMs). Being inspired by the success of MOEA with Inverse Model (IM-MOEA) in solving complicated optimization problems, in this work, an Improved IM-MOEA (I-IM-MOEA)-based matching technique is further proposed to enhance the algorithm’s matching efficiency as well as the alignment’s quality. To overcome the drawback of IM-MOEA that has poor performance on irregular PF, an adjusted selection mechanism is employed to avert the massive reduction in non-domination solutions on irregular PF, a dynamic Reference Vectors (RVs) is used to decrease the computational resources and boost the efficiency of the algorithm, and a local search strategy is introduced to promote the results’ quality. The experiment employs the benchmark provided by Ontology Alignment Evaluation Initiative (OAEI) and three sensor ontologies to assess the performance of I-IM-MOEA, and the experimental results show that I-IM-MOEA is both effective and efficient.
引用
收藏
页码:12227 / 12240
页数:13
相关论文
共 50 条
  • [31] Multi-objective optimization with improved genetic algorithm
    Ishibashi, H
    Aguirre, HE
    Tanaka, K
    Sugimura, T
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 3852 - 3857
  • [32] An improved genetic algorithm for multi-objective optimization
    Lin, F
    He, GM
    PDCAT 2005: Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, Proceedings, 2005, : 938 - 940
  • [33] An improved genetic algorithm for multi-objective optimization
    Chen, GL
    Guo, WZ
    Tu, XZ
    Chen, HW
    Progress in Intelligence Computation & Applications, 2005, : 204 - 210
  • [34] An improved elitist strategy multi-objective evolutionary algorithm
    Wang, Lu
    Xiong, Sheng-Wu
    Yang, Jie
    Fan, Ji-Shan
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 2315 - +
  • [35] A Multi-Objective Evolutionary Algorithm Based on Bilayered Decomposition for Constrained Multi-Objective Optimization
    Yasuda, Yusuke
    Kumagai, Wataru
    Tamura, Kenichi
    Yasuda, Keiichiro
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025, 20 (02) : 244 - 262
  • [36] An evolutionary algorithm for constrained multi-objective optimization problems
    Min, Hua-Qing
    Zhou, Yu-Ren
    Lu, Yan-Sheng
    Jiang, Jia-zhi
    APSCC: 2006 IEEE ASIA-PACIFIC CONFERENCE ON SERVICES COMPUTING, PROCEEDINGS, 2006, : 667 - +
  • [37] An approach to evolutionary multi-objective optimization algorithm with preference
    Wang, JW
    Zhang, Q
    Zhang, HM
    Wei, XP
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 2966 - 2970
  • [38] Multi-objective optimization of cellular fenestration by an evolutionary algorithm
    Wright, Jonathan A.
    Brownlee, Alexander E. I.
    Mourshed, Monjur M.
    Wang, Mengchao
    JOURNAL OF BUILDING PERFORMANCE SIMULATION, 2014, 7 (01) : 33 - 51
  • [39] Multi-objective evolutionary algorithm in ship route optimization
    Vettor, R.
    Guedes Soares, C.
    MARITIME TECHNOLOGY AND ENGINEERING, VOLS. 1 & 2, 2015, : 865 - 873
  • [40] A simple evolutionary algorithm for multi-objective optimization (SEAMO)
    Valenzuela, CL
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 717 - 722