On Spectral Analysis and Spectral Synthesis in the Space of Tempered Functions on Discrete Abelian Groups

被引:0
|
作者
S. S. Platonov
机构
[1] Petrozavodsk State University,Institute of Mathematics
关键词
Spectral synthesis; Spectral analysis; Locally compact Abelian groups; Tempered functions; Bruhat–Schwartz functions; 43A45; 43A25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider some problems of spectral analysis and spectral synthesis in the topological vector space M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document} of tempered functions on a discrete Abelian group G. It is proved that spectral analysis holds in the space M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document} on every Abelian group G, that is, every nonzero closed linear translation invariant subspace of M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document} contains an exponential. For any finitely generated Abelian group G it is proved, that spectral synthesis holds in M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document}, that is, every closed linear translation invariant subspace H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {H}}}$$\end{document} of M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document} coincides with the closed linear span of all exponential monomials belonging to H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {H}}}$$\end{document}. For any Abelian group G with infinite torsion free rank it is proved that spectral synthesis fails to hold in the space M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document}.
引用
收藏
页码:1340 / 1376
页数:36
相关论文
共 50 条
  • [21] Spectral synthesis in the Schwartz space of infinitely differentiable functions
    N. F. Abuzyarova
    Doklady Mathematics, 2014, 90 : 479 - 482
  • [22] SPECTRAL SYNTHESIS OF DIAGONAL OPERATORS ON THE SPACE OF ENTIRE FUNCTIONS
    Seubert, Steven M.
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (03): : 807 - 816
  • [23] Spectral sets and factorizations of finite Abelian groups
    Lagarias, JC
    Wang, Y
    JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 145 (01) : 73 - 98
  • [24] DISCRETE SPECTRAL ANALYSIS
    DEPRINS, J
    CORNELIS.G
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1971, 57 (11): : 1243 - &
  • [25] Discrete systems and their characteristic spectral functions
    Alpay, Daniel
    Gohberg, Israel
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2007, 4 (01) : 1 - 32
  • [26] Discrete Systems and their Characteristic Spectral Functions
    Daniel Alpay
    Israel Gohberg
    Mediterranean Journal of Mathematics, 2007, 4 : 1 - 32
  • [27] Queue Response to Input Correlation Functions: Discrete Spectral Analysis
    Li, San-qi
    Hwang, Chia-Lin
    IEEE-ACM TRANSACTIONS ON NETWORKING, 1993, 1 (05) : 522 - 533
  • [28] Harmonic analysis on discrete Abelian groups
    Laczkovich, M
    Székelyhidi, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1581 - 1586
  • [29] Some remarks on the spectral functions of the Abelian Higgs model
    Dudal, D.
    van Egmond, D. M.
    Guimaraes, M. S.
    Holanda, O.
    Mintz, B. W.
    Palhares, L. F.
    Peruzzo, G.
    Sorella, S. P.
    PHYSICAL REVIEW D, 2019, 100 (06)
  • [30] Spectral synthesis on torsion groups
    Bereczky, A
    Székelyhidi, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (02) : 607 - 613