On Spectral Analysis and Spectral Synthesis in the Space of Tempered Functions on Discrete Abelian Groups

被引:0
|
作者
S. S. Platonov
机构
[1] Petrozavodsk State University,Institute of Mathematics
关键词
Spectral synthesis; Spectral analysis; Locally compact Abelian groups; Tempered functions; Bruhat–Schwartz functions; 43A45; 43A25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider some problems of spectral analysis and spectral synthesis in the topological vector space M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document} of tempered functions on a discrete Abelian group G. It is proved that spectral analysis holds in the space M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document} on every Abelian group G, that is, every nonzero closed linear translation invariant subspace of M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document} contains an exponential. For any finitely generated Abelian group G it is proved, that spectral synthesis holds in M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document}, that is, every closed linear translation invariant subspace H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {H}}}$$\end{document} of M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document} coincides with the closed linear span of all exponential monomials belonging to H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {H}}}$$\end{document}. For any Abelian group G with infinite torsion free rank it is proved that spectral synthesis fails to hold in the space M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document}.
引用
收藏
页码:1340 / 1376
页数:36
相关论文
共 50 条