New Index Formulas as a Meromorphic Generalization of the Chern–Gauss–Bonnet Theorem

被引:0
|
作者
N.V. Borisov
K.N. Ilinski
G.V. Kalinin
机构
[1] St-Petersburg University,IPhys Group, CAPE
[2] University of Birmingham,School of Physics and Space Research
[3] Russian Academy of Sciences,Institute of Spectroscopy
来源
关键词
supersymmetry; index; meromorphic function; Klein surface;
D O I
暂无
中图分类号
学科分类号
摘要
Laplace operators perturbed by meromorphic potential on the Riemann and separated-type Klein surfaces are constructed and their indices are calculated in two different ways. The topological expressions for the indices are obtained from the study of the spectral properties of the operators. Analytical expressions are provided by the heat kernel approach in terms of functional integrals. As a result, two formulae connecting characteristics of meromorphic (real meromorphic) functions and topological properties of Riemann (separated-type Klein) surfaces are derived.
引用
收藏
页码:249 / 262
页数:13
相关论文
共 50 条
  • [31] Chern’s magic form and the Gauss–Bonnet–Chern mass
    Guofang Wang
    Jie Wu
    Mathematische Zeitschrift, 2017, 287 : 843 - 854
  • [32] THE GAUSS-BONNET THEOREM
    Raghunathan, M. S.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (06): : 893 - 900
  • [33] The Gauss-Bonnet theorem
    M. S. Raghunathan
    Indian Journal of Pure and Applied Mathematics, 2015, 46 : 893 - 900
  • [34] Motivic Gauss-Bonnet formulas
    Levine, Marc
    Raksit, Arpon
    ALGEBRA & NUMBER THEORY, 2020, 14 (07) : 1801 - 1851
  • [35] COMBINATORIAL GAUSS-BONNET-CHERN FORMULA
    YU, YL
    TOPOLOGY, 1983, 22 (02) : 153 - 163
  • [36] The hypoelliptic Laplacian and Chern-Gauss-Bonnet
    Bismut, Jean-Michel
    Differential Geometry and Physics, 2006, 10 : 38 - 52
  • [37] The Gauss–Bonnet–Chern mass for graphic manifolds
    Haizhong Li
    Yong Wei
    Changwei Xiong
    Annals of Global Analysis and Geometry, 2014, 45 : 251 - 266
  • [38] A GENERALIZATION OF GAUSS-BONNET FORMULA
    BOREL, A
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1967, 39 (01): : 31 - &
  • [39] A stochastic Gauss-Bonnet-Chern formula
    Nicolaescu, Liviu I.
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 165 (1-2) : 235 - 265
  • [40] The Gauss-Bonnet theorem and Crofton-type formulas in complex space forms
    Abardia, Judit
    Gallego, Eduardo
    Solanes, Gil
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 187 (01) : 287 - 315