The Codimension of Submanifolds with Negative Extrinsic Curvature

被引:0
|
作者
M. Dajczer
C. -R. Onti
Th. Vlachos
机构
[1] IMPA,Department of Mathematics and Statistics
[2] University of Cyprus,Department of Mathematics
[3] University of Ioannina,undefined
来源
Results in Mathematics | 2023年 / 78卷
关键词
Extrinsic curvature; substantial codimension; 53B25; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a substantial isometric immersion into a space form f:Mn→Qcn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:M^n\rightarrow \mathbb {Q}_c^{n+p}$$\end{document} with negative extrinsic curvature and flat normal bundle whose first normal bundle has the lowest possible rank possesses substantial codimension p=n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=n-1$$\end{document}. This fact is already known in the rather special case when also Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^n$$\end{document} has constant sectional curvature.
引用
收藏
相关论文
共 50 条
  • [21] Complete submanifolds of manifolds of negative curvature
    Wang, Qiaoling
    Xia, Changyu
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 39 (01) : 83 - 97
  • [22] On Submanifolds with Negative Curvature in Euclidean Space
    Aminov, Yuriy
    RESULTS IN MATHEMATICS, 2011, 60 (1-4) : 117 - 131
  • [23] On Submanifolds with Negative Curvature in Euclidean Space
    Yuriy Aminov
    Results in Mathematics, 2011, 60 : 117 - 131
  • [24] Complete submanifolds of manifolds of negative curvature
    Qiaoling Wang
    Changyu Xia
    Annals of Global Analysis and Geometry, 2011, 39 : 83 - 97
  • [25] Mean curvature of extrinsic spheres in submanifolds of real space forms
    Palmer, V
    Piñero, M
    ARCHIV DER MATHEMATIK, 2004, 83 (04) : 371 - 380
  • [26] Mean curvature of extrinsic spheres in submanifolds of real space forms
    Vicente Palmer
    Mayte Piñero
    Archiv der Mathematik, 2004, 83 : 371 - 380
  • [27] AN EXTRINSIC RIGIDITY THEOREM FOR SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE IN A SPHERE
    Xu, Hong-We
    Huang, Fei
    Xiang, Fei
    KODAI MATHEMATICAL JOURNAL, 2011, 34 (01) : 85 - 104
  • [28] COMPLETE NONCOMPACT SUBMANIFOLDS OF MANIFOLDS WITH NEGATIVE CURVATURE
    Gao, Ya
    Gao, Yanling
    Mao, Jing
    Xie, Zhiqi
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (01) : 183 - 205
  • [29] Trapping quasiminimizing submanifolds in spaces of negative curvature
    Bangert, V
    Lang, U
    COMMENTARII MATHEMATICI HELVETICI, 1996, 71 (01) : 122 - 143
  • [30] CURVATURE ESTIMATES FOR MINIMAL SUBMANIFOLDS OF HIGHER CODIMENSION AND SMALL G-RANK
    Jost, J.
    Xin, Y. L.
    Yang, Ling
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (12) : 8301 - 8323