The Codimension of Submanifolds with Negative Extrinsic Curvature

被引:0
|
作者
M. Dajczer
C. -R. Onti
Th. Vlachos
机构
[1] IMPA,Department of Mathematics and Statistics
[2] University of Cyprus,Department of Mathematics
[3] University of Ioannina,undefined
来源
Results in Mathematics | 2023年 / 78卷
关键词
Extrinsic curvature; substantial codimension; 53B25; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a substantial isometric immersion into a space form f:Mn→Qcn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:M^n\rightarrow \mathbb {Q}_c^{n+p}$$\end{document} with negative extrinsic curvature and flat normal bundle whose first normal bundle has the lowest possible rank possesses substantial codimension p=n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=n-1$$\end{document}. This fact is already known in the rather special case when also Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^n$$\end{document} has constant sectional curvature.
引用
收藏
相关论文
共 50 条
  • [1] The Codimension of Submanifolds with Negative Extrinsic Curvature
    Dajczer, M.
    Onti, C. -R
    Vlachos, Th.
    RESULTS IN MATHEMATICS, 2023, 78 (02)
  • [2] Submanifolds with nonpositive extrinsic curvature
    Samuel Canevari
    Guilherme Machado de Freitas
    Fernando Manfio
    Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 407 - 426
  • [3] Submanifolds with nonpositive extrinsic curvature
    Canevari, Samuel
    de Freitas, Guilherme Machado
    Manfio, Fernando
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (02) : 407 - 426
  • [4] ON SUBMANIFOLDS WITH NONPOSITIVE EXTRINSIC CURVATURE
    FLORIT, LA
    MATHEMATISCHE ANNALEN, 1994, 298 (01) : 187 - 192
  • [5] CODIMENSION 2 NONORIENTABLE SUBMANIFOLDS WITH NONNEGATIVE CURVATURE
    BALDIN, YY
    MERCURI, F
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) : 918 - 920
  • [6] Curvature Estimates for Minimal Submanifolds of Higher Codimension
    Yuanlong XINLing YANG Key Laboratory of Mathematics for Nonlinear Sciences
    Chinese Annals of Mathematics, 2009, 30 (04) : 379 - 396
  • [7] Curvature estimates for minimal submanifolds of higher codimension
    Xin, Yuanlong
    Yang, Ling
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (04) : 379 - 396
  • [8] Curvature estimates for minimal submanifolds of higher codimension
    Yuanlong Xin
    Ling Yang
    Chinese Annals of Mathematics, Series B, 2009, 30 : 379 - 396
  • [9] Submanifolds of codimension two attaining equality in an extrinsic inequality
    Dajczer, Marcos
    Tojeiro, Ruy
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 146 : 461 - 474
  • [10] A Survey on Submanifolds with Nonpositive Extrinsic Curvature
    Canevari, Samuel
    de Freitas, Guilherme Machado
    Manfio, Fernando
    PROCEEDINGS BOOK OF INTERNATIONAL WORKSHOP ON THEORY OF SUBMANIFOLDS, VOL 1, 2016, 2017, : 2 - 11