Hölder Continuity of the Spectra for Aperiodic Hamiltonians

被引:0
|
作者
Siegfried Beckus
Jean Bellissard
Horia Cornean
机构
[1] Universität Potsdam,Institut für Mathematik
[2] Westfälische Wilhelms-Universität,Fachbereich 10 Mathematik und Informatik
[3] Aalborg University,Department of Mathematical Sciences
来源
Annales Henri Poincaré | 2019年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the spectral location of a strongly pattern equivariant Hamiltonians arising through configurations on a colored lattice. Roughly speaking, two configurations are “close to each other” if, up to a translation, they “almost coincide” on a large fixed ball. The larger this ball, the more similar they are, and this induces a metric on the space of the corresponding dynamical systems. Our main result states that the map which sends a given configuration into the spectrum of its associated Hamiltonian, is Hölder (even Lipschitz) continuous in the usual Hausdorff metric. Specifically, the spectral distance of two Hamiltonians is estimated by the distance of the corresponding dynamical systems.
引用
收藏
页码:3603 / 3631
页数:28
相关论文
共 50 条
  • [1] Holder Continuity of the Spectra for Aperiodic Hamiltonians
    Beckus, Siegfried
    Bellissard, Jean
    Cornean, Horia
    ANNALES HENRI POINCARE, 2019, 20 (11): : 3603 - 3631
  • [2] Hölder Continuity of Random Processes
    Witold Bednorz
    Journal of Theoretical Probability, 2007, 20 : 917 - 934
  • [3] A chaotic system with Hölder continuity
    Jianxiong Zhang
    Wansheng Tang
    Nonlinear Dynamics, 2010, 62 : 761 - 768
  • [4] Hölder Continuity of Solutions of SPDEs with Reflection
    Dalang R.C.
    Zhang T.
    Communications in Mathematics and Statistics, 2013, 1 (2) : 133 - 142
  • [5] Hölder continuity of harmonic quasiconformal mappings
    Miloš Arsenović
    Vesna Manojlović
    Matti Vuorinen
    Journal of Inequalities and Applications, 2011
  • [6] On Hölder Continuity of Solutions to the Beltrami Equations
    V. Ryazanov
    R. Salimov
    E. Sevost’yanov
    Ukrainian Mathematical Journal, 2023, 75 : 586 - 599
  • [7] Generalized Hölder Continuity and Oscillation Functions
    Imre Péter Tóth
    Mathematical Physics, Analysis and Geometry, 2018, 21
  • [8] Intrinsic Hölder Continuity of Harmonic Functions
    Wolfhard Hansen
    Potential Analysis, 2017, 47 : 1 - 12
  • [9] On Hölder Continuity of Solutions to the Beltrami Equations
    Ryazanov, V.
    Salimov, R.
    Sevost'yanov, E.
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (04) : 586 - 599
  • [10] Hölder Continuity and Injectivity of Optimal Maps
    Alessio Figalli
    Young-Heon Kim
    Robert J. McCann
    Archive for Rational Mechanics and Analysis, 2013, 209 : 747 - 795