Hölder Continuity of Random Processes

被引:0
|
作者
Witold Bednorz
机构
[1] University of Warsaw,Department of Mathematic
来源
Journal of Theoretical Probability | 2007年 / 20卷
关键词
Majorizing measures; Minorizing metric; Regularity of samples;
D O I
暂无
中图分类号
学科分类号
摘要
For a Young function φ and a Borel probability measure m on a compact metric space (T,d) the minorizing metric is defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau_{m,\varphi}(s,t):=\max\biggl\{\int^{d(s,t)}_{0}\varphi^{-1}\biggl(\frac{1}{m(B(s,\varepsilon))}\biggr)d\varepsilon,\int^{d(s,t)}_{0}\varphi^{-1}\biggl(\frac{1}{m(B(t,\varepsilon ))}\biggr)d\varepsilon\biggr\}.$$\end{document} In the paper we extend the result of Kwapien and Rosinski (Progr. Probab. 58, 155–163, 2004) relaxing the conditions on φ under which there exists a constant K such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{E}\sup_{s,t\in T}\varphi\biggl(\frac{|X(s)-X(t)|}{K\tau _{m,\varphi}(s,t)}\biggr)\leq 1,$$\end{document} for each separable process X(t), t∈T which satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup_{s,t\in T}\mathbf{E}\varphi(\frac {|X(s)-f(t)|}{d(s,t)})\leq 1$\end{document} . In the case of φp(x)≡xp, p≥1 we obtain the somewhat weaker results.
引用
收藏
页码:917 / 934
页数:17
相关论文
共 50 条
  • [1] Hölder continuity of semigroups for time changed symmetric stable processes
    Dejun Luo
    Jian Wang
    Frontiers of Mathematics in China, 2016, 11 : 109 - 121
  • [2] Hölder continuity for spatial and path processes via spectral analysis
    Douglas Blount
    Michael A. Kouritzin
    Probability Theory and Related Fields, 2001, 119 : 589 - 603
  • [3] A chaotic system with Hölder continuity
    Jianxiong Zhang
    Wansheng Tang
    Nonlinear Dynamics, 2010, 62 : 761 - 768
  • [4] Continuous Gaussian Multifractional Processes with Random Pointwise Hölder Regularity
    Antoine Ayache
    Journal of Theoretical Probability, 2013, 26 : 72 - 93
  • [5] Hölder Continuity of Solutions of SPDEs with Reflection
    Dalang R.C.
    Zhang T.
    Communications in Mathematics and Statistics, 2013, 1 (2) : 133 - 142
  • [6] Hölder continuity of harmonic quasiconformal mappings
    Miloš Arsenović
    Vesna Manojlović
    Matti Vuorinen
    Journal of Inequalities and Applications, 2011
  • [7] On Hölder Continuity of Solutions to the Beltrami Equations
    V. Ryazanov
    R. Salimov
    E. Sevost’yanov
    Ukrainian Mathematical Journal, 2023, 75 : 586 - 599
  • [8] Hölder Continuity of the Spectra for Aperiodic Hamiltonians
    Siegfried Beckus
    Jean Bellissard
    Horia Cornean
    Annales Henri Poincaré, 2019, 20 : 3603 - 3631
  • [9] Generalized Hölder Continuity and Oscillation Functions
    Imre Péter Tóth
    Mathematical Physics, Analysis and Geometry, 2018, 21
  • [10] Intrinsic Hölder Continuity of Harmonic Functions
    Wolfhard Hansen
    Potential Analysis, 2017, 47 : 1 - 12