Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival

被引:0
|
作者
Arturo Moncada-Torres
Marissa C. van Maaren
Mathijs P. Hendriks
Sabine Siesling
Gijs Geleijnse
机构
[1] Netherlands Comprehensive Cancer Organization (IKNL),Department of Research and Development
[2] University of Twente,Department of Health Technology and Services Research
[3] Northwest Clinics,Department of Medical Oncology
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Cox Proportional Hazards (CPH) analysis is the standard for survival analysis in oncology. Recently, several machine learning (ML) techniques have been adapted for this task. Although they have shown to yield results at least as good as classical methods, they are often disregarded because of their lack of transparency and little to no explainability, which are key for their adoption in clinical settings. In this paper, we used data from the Netherlands Cancer Registry of 36,658 non-metastatic breast cancer patients to compare the performance of CPH with ML techniques (Random Survival Forests, Survival Support Vector Machines, and Extreme Gradient Boosting [XGB]) in predicting survival using the c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document}-index. We demonstrated that in our dataset, ML-based models can perform at least as good as the classical CPH regression (c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document}-index ∼0.63\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \,0.63$$\end{document}), and in the case of XGB even better (c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document}-index ∼0.73\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 0.73$$\end{document}). Furthermore, we used Shapley Additive Explanation (SHAP) values to explain the models’ predictions. We concluded that the difference in performance can be attributed to XGB’s ability to model nonlinearities and complex interactions. We also investigated the impact of specific features on the models’ predictions as well as their corresponding insights. Lastly, we showed that explainable ML can generate explicit knowledge of how models make their predictions, which is crucial in increasing the trust and adoption of innovative ML techniques in oncology and healthcare overall.
引用
收藏
相关论文
共 50 条
  • [21] Can machine learning provide preoperative predictions of biological hemostasis after extracorporeal circulation for cardiac surgery?
    Perduca, Vittorio
    Bouaziz, Olivier
    Zannis, Kostantinos
    Beaussier, Marc
    Untereiner, Olivier
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2024, 168 (04):
  • [22] Improved survival prediction for pancreatic cancer using machine learning and regression
    Floyd, Stuart H.
    Alvarez, Sergio A.
    Ruiz, Carolina
    Hayward, John
    Sullivan, Mary
    Tseng, Jennifer F.
    Whalen, Giles F.
    GASTROENTEROLOGY, 2007, 132 (04) : A869 - A870
  • [23] Explainable Machine Learning Explores Association Between Sarcopenia and Breast Cancer Distant Metastasis
    Qi, Hongzhuo
    An, Yunfei
    Hu, Xiaohui
    Miao, Shidi
    Li, Jing
    IEEE ACCESS, 2023, 11 : 65725 - 65738
  • [24] Aid of a machine learning algorithm can improve clinician predictions of patient quality of life during breast cancer treatments
    Mikko Nuutinen
    Anna-Maria Hiltunen
    Sonja Korhonen
    Ira Haavisto
    Paula Poikonen-Saksela
    Johanna Mattson
    Georgios Manikis
    Haridimos Kondylakis
    Panagiotis Simos
    Ketti Mazzocco
    Ruth Pat-Horenczyk
    Berta Sousa
    Fatima Cardoso
    Isabel Manica
    Ian Kudel
    Riikka-Leena Leskelä
    Health and Technology, 2023, 13 : 229 - 244
  • [25] A comparison of machine learning techniques for survival prediction in breast cancer
    Leonardo Vanneschi
    Antonella Farinaccio
    Giancarlo Mauri
    Marco Antoniotti
    Paolo Provero
    Mario Giacobini
    BioData Mining, 4
  • [26] Machine Learning Techniques for Survival Time Prediction in Breast Cancer
    Mihaylov, Iliyan
    Nisheva, Maria
    Vassilev, Dimitar
    ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS, AND APPLICATIONS, AIMSA 2018, 2018, 11089 : 186 - 194
  • [27] Aid of a machine learning algorithm can improve clinician predictions of patient quality of life during breast cancer treatments
    Nuutinen, Mikko
    Hiltunen, Anna-Maria
    Korhonen, Sonja
    Haavisto, Ira
    Poikonen-Saksela, Paula
    Mattson, Johanna
    Manikis, Georgios
    Kondylakis, Haridimos
    Simos, Panagiotis
    Mazzocco, Ketti
    Pat-Horenczyk, Ruth
    Sousa, Berta
    Cardoso, Fatima
    Manica, Isabel
    Kudel, Ian
    Leskela, Riikka-Leena
    HEALTH AND TECHNOLOGY, 2023, 13 (02) : 229 - 244
  • [28] A comparison of machine learning techniques for survival prediction in breast cancer
    Vanneschi, Leonardo
    Farinaccio, Antonella
    Mauri, Giancarlo
    Antoniotti, Mauro
    Provero, Paolo
    Giacobini, Mario
    BIODATA MINING, 2011, 4
  • [29] Comparison of Bayesian survival analysis and Cox regression analysis in simulated and breast cancer data sets
    Omurlu, Imran Kurt
    Ozdamar, Kazim
    Ture, Mevlut
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (08) : 11341 - 11346
  • [30] The comparisons of random survival forests and Cox regression analysis with simulation and an application related to breast cancer
    Omurlu, Imran Kurt
    Ture, Mevlut
    Tokatli, Fuesun
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (04) : 8582 - 8588