Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival

被引:0
|
作者
Arturo Moncada-Torres
Marissa C. van Maaren
Mathijs P. Hendriks
Sabine Siesling
Gijs Geleijnse
机构
[1] Netherlands Comprehensive Cancer Organization (IKNL),Department of Research and Development
[2] University of Twente,Department of Health Technology and Services Research
[3] Northwest Clinics,Department of Medical Oncology
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Cox Proportional Hazards (CPH) analysis is the standard for survival analysis in oncology. Recently, several machine learning (ML) techniques have been adapted for this task. Although they have shown to yield results at least as good as classical methods, they are often disregarded because of their lack of transparency and little to no explainability, which are key for their adoption in clinical settings. In this paper, we used data from the Netherlands Cancer Registry of 36,658 non-metastatic breast cancer patients to compare the performance of CPH with ML techniques (Random Survival Forests, Survival Support Vector Machines, and Extreme Gradient Boosting [XGB]) in predicting survival using the c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document}-index. We demonstrated that in our dataset, ML-based models can perform at least as good as the classical CPH regression (c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document}-index ∼0.63\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \,0.63$$\end{document}), and in the case of XGB even better (c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document}-index ∼0.73\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 0.73$$\end{document}). Furthermore, we used Shapley Additive Explanation (SHAP) values to explain the models’ predictions. We concluded that the difference in performance can be attributed to XGB’s ability to model nonlinearities and complex interactions. We also investigated the impact of specific features on the models’ predictions as well as their corresponding insights. Lastly, we showed that explainable ML can generate explicit knowledge of how models make their predictions, which is crucial in increasing the trust and adoption of innovative ML techniques in oncology and healthcare overall.
引用
收藏
相关论文
共 50 条
  • [1] Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival
    Moncada-Torres, Arturo
    van Maaren, Marissa C.
    Hendriks, Mathijs P.
    Siesling, Sabine
    Geleijnse, Gijs
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] Survival analysis for lung cancer patients: A comparison of Cox regression and machine learning models
    Germer, Sebastian
    Rudolph, Christiane
    Labohm, Louisa
    Katalinic, Alexander
    Rath, Natalie
    Rausch, Katharina
    Holleczek, Bernd
    Handels, Heinz
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 191
  • [3] Predicting cancer survival at different stages: Insights from fair and explainable machine learning approaches
    Kamble, Tejasvi Sanjay
    Wang, Hongtao
    Myers, Nicole
    Littlefield, Nickolas
    Reid, Leah
    Mccarthy, Cynthia S.
    Lee, Young Ji
    Liu, Hongfang
    Pantanowitz, Liron
    Amirian, Soheyla
    Rashidi, Hooman H.
    Tafti, Ahmad P.
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 197
  • [4] Predicting Postoperative Lung Cancer Recurrence and Survival Using Cox Proportional Hazards Regression and Machine Learning
    Pu, Lucy
    Dhupar, Rajeev
    Meng, Xin
    CANCERS, 2025, 17 (01)
  • [5] Comparison of the cox regression to machine learning in predicting the survival of anaplastic thyroid carcinoma
    Xu, Lizhen
    Cai, Liangchun
    Zhu, Zheng
    Chen, Gang
    BMC ENDOCRINE DISORDERS, 2023, 23 (01)
  • [6] Comparison of the cox regression to machine learning in predicting the survival of anaplastic thyroid carcinoma
    Lizhen Xu
    Liangchun Cai
    Zheng Zhu
    Gang Chen
    BMC Endocrine Disorders, 23
  • [7] Machine learning in personalized laryngeal cancer management: insights into clinical characteristics, therapeutic options, and survival predictions
    Alshwayyat, Sakhr
    Kamal, Tamara Feras
    Alshwayyat, Tala Abdulsalam
    Alshwayyat, Mustafa
    Hanifa, Hamdah
    Odat, Ramez M.
    Rawashdeh, Miassar
    Alawneh, Alia
    Qassem, Kholoud
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2025, 282 (02) : 945 - 960
  • [8] Machine Learning Explainability in Breast Cancer Survival
    Jansen, Tom
    Geleijnse, Gijs
    Van Maaren, Marissa
    Hendriks, Mathijs P.
    Ten Teije, Annette
    Moncada-Torres, Arturo
    DIGITAL PERSONALIZED HEALTH AND MEDICINE, 2020, 270 : 307 - 311
  • [9] Morphological and molecular breast cancer profiling through explainable machine learning
    Alexander Binder
    Michael Bockmayr
    Miriam Hägele
    Stephan Wienert
    Daniel Heim
    Katharina Hellweg
    Masaru Ishii
    Albrecht Stenzinger
    Andreas Hocke
    Carsten Denkert
    Klaus-Robert Müller
    Frederick Klauschen
    Nature Machine Intelligence, 2021, 3 : 355 - 366
  • [10] Morphological and molecular breast cancer profiling through explainable machine learning
    Binder, Alexander
    Bockmayr, Michael
    Hagele, Miriam
    Wienert, Stephan
    Heim, Daniel
    Hellweg, Katharina
    Ishii, Masaru
    Stenzinger, Albrecht
    Hocke, Andreas
    Denkert, Carsten
    Mueller, Klaus-Robert
    Klauschen, Frederick
    NATURE MACHINE INTELLIGENCE, 2021, 3 (04) : 355 - 366