Ensemble Augmentation for Deep Neural Networks Using 1-D Time Series Vibration Data

被引:0
|
作者
Atik Faysal
W. K. Ngui
M. H. Lim
M. S. Leong
机构
[1] Universiti Malaysia Pahang,Institute of Noise and Vibration
[2] Lebuhraya Tun Razak,undefined
[3] Universiti Teknologi Malaysia,undefined
[4] Jalan Sultan Yahya Petra,undefined
来源
Journal of Vibration Engineering & Technologies | 2023年 / 11卷
关键词
Data augmentation; Transfer learning; Condition monitoring; DCGAN; Vibration signal;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1987 / 2011
页数:24
相关论文
共 50 条
  • [31] Multivariate solar power time series forecasting using multilevel data fusion and deep neural networks
    Almaghrabi, Sarah
    Rana, Mashud
    Hamilton, Margaret
    Rahaman, Mohammad Saiedur
    INFORMATION FUSION, 2024, 104
  • [32] Long-term missing value imputation for time series data using deep neural networks
    Jangho Park
    Juliane Müller
    Bhavna Arora
    Boris Faybishenko
    Gilberto Pastorello
    Charuleka Varadharajan
    Reetik Sahu
    Deborah Agarwal
    Neural Computing and Applications, 2023, 35 : 9071 - 9091
  • [33] Deep learning of electromechanical impedance for concrete structural damage identification using 1-D convolutional neural networks
    Ai, Demi
    Mo, Fang
    Cheng, Jiabao
    Du, Lixun
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 385
  • [34] 1-D Residual Convolutional Neural Network coupled with Data Augmentation and Regularization for the ICPHM 2023 Data Challenge
    Kreuzer, Matthias
    Kellermann, Walter
    2023 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM, 2023, : 186 - 191
  • [35] Sugarcane yield prediction in Brazil using NDVI time series and neural networks ensemble
    Fernandes, Jeferson Lobato
    Favilla Ebecken, Nelson Francisco
    Dalla Mora Esquerdo, Julio Cesar
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (16) : 4631 - 4644
  • [36] Kernel-convoluted Deep Neural Networks with Data Augmentation
    Kim, Minjin
    Kim, Young-geun
    Kim, Dongha
    Kim, Yongdai
    Paik, Myunghee Cho
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8155 - 8162
  • [37] Supervised text data augmentation method for deep neural networks
    Seol, Jaehwan
    Jung, Jieun
    Choi, Yeonseok
    Choi, Yong-Seok
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2023, 30 (03) : 343 - 354
  • [38] A survey on face data augmentation for the training of deep neural networks
    Xiang Wang
    Kai Wang
    Shiguo Lian
    Neural Computing and Applications, 2020, 32 : 15503 - 15531
  • [39] A survey on face data augmentation for the training of deep neural networks
    Wang, Xiang
    Wang, Kai
    Lian, Shiguo
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (19): : 15503 - 15531
  • [40] An Approach to Improving the Effectiveness of Data Augmentation for Deep Neural Networks
    Jang, Seunghui
    Lee, Ki Yong
    Kim, Yanggon
    2020 IEEE 44TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2020), 2020, : 1290 - 1295