Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach

被引:0
|
作者
A. K. Abramyan
S. A. Vakulenko
机构
[1] Institute for Problems of Machine Engineering,
来源
关键词
Neural Network; Analytic Approach; Hamiltonian System; Chaotic Behavior; Diffusion System;
D O I
暂无
中图分类号
学科分类号
摘要
Some classes of dissipative and Hamiltonian distributed systems are described. The dynamics of these systems is effectively reduced to finite-dimensional dynamics which can be “unboundedly complex” in a sense. Yarying the parameters of these systems, we can obtain an arbitrary (to within the orbital topological equivalence) structurally stable attractor in the dissipative case and an arbitrary polynomial weakly integrable Hamiltonian in the conservative case. As examples, we consider Hopfield neural networks and some reaction–diffusion systems in the dissipative case and a nonlinear string in the Hamiltonian case.
引用
收藏
页码:245 / 255
页数:10
相关论文
共 50 条
  • [31] Dissipative Control of Time-delay Chaotic Systems via DOBC Approach
    Gao, Yanbo
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 504 - 508
  • [32] On the chaotic diffusion in multidimensional Hamiltonian systems
    P. M. Cincotta
    C. M. Giordano
    J. G. Martí
    C. Beaugé
    Celestial Mechanics and Dynamical Astronomy, 2018, 130
  • [33] Chaotic Hamiltonian systems: Survival probability
    Avetisov, V. A.
    Nechaev, S. K.
    PHYSICAL REVIEW E, 2010, 81 (04):
  • [34] Chaotic mixing in noisy Hamiltonian systems
    Kandrup, HE
    Pogorelov, IV
    Sideris, IV
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 311 (04) : 719 - 732
  • [35] On the chaotic diffusion in multidimensional Hamiltonian systems
    Cincotta, P. M.
    Giordano, C. M.
    Marti, J. G.
    Beauge, C.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (01):
  • [36] Regular and chaotic motion in Hamiltonian systems
    Varvoglis, H
    CHAOS AND STABILITY IN PLANETARY SYSTEMS, 2005, 683 : 141 - 184
  • [37] Fractal boundaries in chaotic hamiltonian systems
    Viana, R. L.
    Mathias, A. C.
    Marcus, F. A.
    Kroetz, T.
    Caldas, I. L.
    XVIII BRAZILIAN COLLOQUIUM ON ORBITAL DYNAMICS, 2017, 911
  • [38] INVARIANTS OF CHAOTIC HAMILTONIAN-SYSTEMS
    SITARAM, BR
    PRAMANA-JOURNAL OF PHYSICS, 1995, 44 (04): : 295 - 302
  • [39] Wada basins and unpredictability in Hamiltonian and dissipative systems
    Aguirre, J
    Vallejo, JC
    Sanjuan, MAF
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (22-24): : 4171 - 4175
  • [40] Study on the stability of switched dissipative Hamiltonian systems
    Zhu Liying
    Wang Yuzhen
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2006, 49 (05): : 578 - 591