Calderón–Zygmund Operators and Commutators on Weak Musielak–Orlicz Hardy Spaces

被引:0
|
作者
Xiao Wang
Wenchang Sun
机构
[1] Nankai University,School of Mathematical Sciences and LPMC
关键词
Calderón–Zygmund operators; Commutators; Weak Hardy spaces; Musielak–Orlicz functions; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the boundedness of δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-Calderón–Zygmund operators and their commutators from weak Musielak–Orlicz Hardy spaces to weak Musielak–Orlicz spaces. To obtain the boundedness of a commutator of δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-Calderón–Zygmund operator generated by a locally integrable function, we introduce a non-trivial subspace of BMO(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BMO(\mathbb {R}^n)$$\end{document} and prove that the commutator of a δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-Calderón–Zygmund operator is bounded from a weak Musielak–Orlicz Hardy space to a weak Musielak–Orlicz space if the locally integrable function belongs to such a subspace of BMO(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BMO(\mathbb {R}^n)$$\end{document}.
引用
收藏
相关论文
共 50 条