Randomized Fixed-Parameter Algorithms for the Closest String Problem

被引:0
|
作者
Zhi-Zhong Chen
Bin Ma
Lusheng Wang
机构
[1] Tokyo Denki University,Division of Information System Design
[2] University of Waterloo,School of Computer Science
[3] City University of Hong Kong,Department of Computer Science
来源
Algorithmica | 2016年 / 74卷
关键词
The closest string problem; Fixed-parameter algorithms ; Randomized algorithms; Computational biology;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set S={s1,s2,…,sn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = \{s_1, s_2, \ldots , s_n\}$$\end{document} of strings of equal length L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} and an integer d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}, the closest string problem (CSP) requires the computation of a string s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} of length L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} such that d(s,si)≤d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(s, s_i) \le d$$\end{document} for each si∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_i \in S$$\end{document}, where d(s,si)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(s, s_i)$$\end{document} is the Hamming distance between s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} and si\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_i$$\end{document}. The problem is NP-hard and has been extensively studied in the context of approximation algorithms and fixed-parameter algorithms. Fixed-parameter algorithms provide the most practical solutions to its real-life applications in bioinformatics. In this paper we develop the first randomized fixed-parameter algorithms for CSP. Not only are the randomized algorithms much simpler than their deterministic counterparts, their time complexities are also significantly better than the previously best known (deterministic) algorithms.
引用
收藏
页码:466 / 484
页数:18
相关论文
共 50 条
  • [41] Fixed-parameter algorithms for rectilinear Steiner tree and rectilinear traveling salesman problem in the plane
    Cambazard, Hadrien
    Catusse, Nicolas
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 270 (02) : 419 - 429
  • [42] Subexponential fixed-parameter algorithms for partial vector domination
    Ishii, Toshimasa
    Ono, Hirotaka
    Uno, Yushi
    DISCRETE OPTIMIZATION, 2016, 22 : 111 - 121
  • [43] Towards fixed-parameter tractable algorithms for abstract argumentation
    Dvorak, Wolfgang
    Pichler, Reinhard
    Woltran, Stefan
    ARTIFICIAL INTELLIGENCE, 2012, 186 : 1 - 37
  • [44] Fixed-parameter tractable algorithms for testing upward planarity
    Healy, P
    Lynch, K
    SOFSEM 2005:THEORY AND PRACTICE OF COMPUTER SCIENCE, 2005, 3381 : 199 - 208
  • [45] Bounds and Fixed-Parameter Algorithms for Weighted Improper Coloring
    Gudmundsson, Bjarki Agust
    Magnusson, Tomas Ken
    Saemundsson, Bjorn Orri
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2016, 322 : 181 - 195
  • [46] Even Better Fixed-Parameter Algorithms for Bicluster Editing
    Lafond, Manuel
    COMPUTING AND COMBINATORICS (COCOON 2020), 2020, 12273 : 578 - 590
  • [47] Fixed-parameter tractable algorithms for Tracking Shortest Paths
    Banik, Aritra
    Choudhary, Pratibha
    Raman, Venkatesh
    Saurabh, Saket
    THEORETICAL COMPUTER SCIENCE, 2020, 846 : 1 - 13
  • [48] Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs
    Brand, Cornelius
    Ganian, Robert
    Roeder, Sebastian
    Schager, Florian
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2023, PT II, 2023, 14466 : 66 - 81
  • [49] On efficient fixed-parameter algorithms for weighted vertex cover
    Niedermeier, R
    Rossmanith, P
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2003, 47 (02): : 63 - 77
  • [50] Improved kernelization and fixed-parameter algorithms for bicluster editing
    Lafond, Manuel
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 47 (05)