A quantitative approach to disjointly non-singular operators

被引:0
|
作者
Manuel González
Antonio Martinón
机构
[1] Universidad de Cantabria,Departamento de Matemáticas, Facultad de Ciencias
[2] Universidad de La Laguna,Departamento de Análisis Matemático, Facultad de Ciencias
关键词
Disjointly non-singular operator; Disjointly strictly singular operator; Order continuous Banach lattice; Operational quantity; space; Primary: 47B60; 47A55; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and study some operational quantities which characterize the disjointly non-singular operators from a Banach lattice E to a Banach space Y when E is order continuous, and some other quantities which characterize the disjointly strictly singular operators for arbitrary E.
引用
收藏
相关论文
共 50 条
  • [21] On Disjointly singular centralizers
    Jesús M. F. Castillo
    Wilson Cuellar
    Valentin Ferenczi
    Yolanda Moreno
    Israel Journal of Mathematics, 2022, 252 : 215 - 241
  • [22] Non-Singular graphs with a Singular Deck
    Farrugia, Alexander
    Gauci, John Baptist
    Sciriha, Irene
    DISCRETE APPLIED MATHEMATICS, 2016, 202 : 50 - 57
  • [23] Numerical investigations on COVID-19 model through singular and non-singular fractional operators
    Kumar, Sunil
    Chauhan, R. P.
    Momani, Shaher
    Hadid, Samir
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (01)
  • [24] Nonlinear Schrodinger equation under non-singular fractional operators: A computational study
    Khan, Asif
    Ali, Amir
    Ahmad, Shabir
    Saifullah, Sayed
    Nonlaopon, Kamsing
    Akgul, Ali
    RESULTS IN PHYSICS, 2022, 43
  • [25] Comparative simulations for solutions of fractional Sturm–Liouville problems with non-singular operators
    Erdal Bas
    Ramazan Ozarslan
    Dumitru Baleanu
    Ahu Ercan
    Advances in Difference Equations, 2018
  • [26] Non-singular cyclic cosmology: A noncommutative f(R) approach
    Astorga-Moreno, J. A.
    Mena-Barboza, E. A.
    Perez-Payan, S.
    MODERN PHYSICS LETTERS A, 2025, 40 (04)
  • [27] On Disjointly Singular Centralizers
    Castillo, Jesus M. F.
    Cuellar, Wilson
    Ferenczi, Valentin
    Moreno, Yolanda
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 252 (01) : 215 - 241
  • [28] A Semi-analytical Solutions of Fractional Riccati Differential Equation via Singular and Non-singular Operators
    Agheli, B.
    Firozja, M. Adabitabar
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15
  • [29] A note on singular and non-singular black holes
    Chinaglia, Stefano
    Zerbini, Sergio
    GENERAL RELATIVITY AND GRAVITATION, 2017, 49 (06)
  • [30] Comparative analysis of fractional order dengue model with temperature effect via singular and non-singular operators
    Defterli, Ozlem
    CHAOS SOLITONS & FRACTALS, 2021, 144