Molecular electrostatic potential analysis of non-covalent complexes

被引:0
|
作者
PADINJARE VEETIL BIJINA
CHERUMUTTATHU H SURESH
机构
[1] CSIR-National Institute for Interdisciplinary Science and Technology,Chemical Sciences and Technology Division and Academy of Scientific & Innovative Research (AcSIR)
来源
关键词
Non-covalent complex; hydrogen bond; halogen bond; dihydrogen bond; pnicogen bond; tetrel bond; lithium bond; chalcogen bond; molecular electrostatic potential.;
D O I
暂无
中图分类号
学科分类号
摘要
Ab initio MP4/Aug-cc-pvDZ//MP2/6-311 ++g(d,p) level interaction energy (Eint) and molecular electrostatic potential analysis (MESP) of a large variety of non-covalent intermolecular complexes, viz. tetrel, chalcogen, pnicogen, halogen, hydrogen, dihydrogen and lithium bonded complexes have been reported. The electronic changes associated with the non-covalent complex formation is monitored in terms of MESP minimum (Vmin) in the free and complexed states of the donor and acceptor molecules as well as in terms of MESP at the donor and acceptor atoms (Vn) of the free monomers and complexes. The change in Vmin or Vn on the donor molecule (ΔVmin(D) or ΔVn(D)) during complex formation is proportional to its electron donating ability while such a change on the acceptor molecule (ΔVmin(A) or ΔVn(A)) is proportional to its electron accepting ability. Further, the quantities ΔΔVmin=ΔVmin(D) −ΔVmin(A) and ΔΔVn=ΔVn(D) −ΔVn(A) have shown strong linear correlations with Eint of the complex (Eint values fall in the range 0.7 to 46.2 kcal/mol for 54 complexes) and suggest that the intermolecular non-covalent interactions in a wide variety of systems can be monitored and assessed in terms of change in MESP due to complex formation in the gas phase. With the incorporation of solvent effect in the calculation, charged systems showed significant deviations from the linear correlation. The MESP based analysis proposes that the large variety of intermolecular non-covalent complexes considered in this study can be grouped under the general category of electron donor-acceptor (eDA) complexes.
引用
收藏
页码:1677 / 1686
页数:9
相关论文
共 50 条
  • [21] A non-covalent inhibitor with pan-KRAS potential
    Kingwell, Katie
    NATURE REVIEWS DRUG DISCOVERY, 2023, 22 (08) : 622 - 622
  • [22] Rigid molecular disks via non-covalent interactions
    Frey, H
    CHEMIE IN UNSERER ZEIT, 1999, 33 (01) : 56 - 56
  • [23] The non-covalent nature of the molecular structure of the benzene molecule
    Cardozo, Thiago Messias
    Fantuzzi, Felipe
    Chaer Nascimento, Marco Antonio
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (22) : 11024 - 11030
  • [24] Dynamics of non-covalent biological processes at the molecular level
    Juárez, RG
    Morales, LB
    Flores-Pérez, P
    REVISTA MEXICANA DE FISICA, 2000, 46 : 135 - 141
  • [25] Molecular conjugation using non-covalent click chemistry
    Schreiber, Cynthia L.
    Smith, Bradley D.
    NATURE REVIEWS CHEMISTRY, 2019, 3 (06) : 393 - 400
  • [26] Nanotubular non-covalent macrocycle within non-covalent macrocycle assembly: (MeOH)12 encapsulated in a molecular clip cyclododecamer
    Cao, Li-Ping
    Meng, Xiang-Gao
    Ding, Jiao-Yang
    Chen, Yun-Feng
    Gao, Meng
    Wu, Yan-Dong
    Li, Yi-Tao
    Wu, An-Xin
    Isaacs, Lyle
    CHEMICAL COMMUNICATIONS, 2010, 46 (25) : 4508 - 4510
  • [27] Molecular conjugation using non-covalent click chemistry
    Cynthia L. Schreiber
    Bradley D. Smith
    Nature Reviews Chemistry, 2019, 3 : 393 - 400
  • [28] NON-COVALENT INTERACTIONS AND MOLECULAR ASSOCIATION INVOLVING BIOMOLECULES
    VIJAYAN, M
    CURRENT SCIENCE, 1983, 52 (23): : 1125 - 1125
  • [29] Molecular dynamics simulation of non-covalent interactions between polynuclear platinum(II) complexes and DNA
    Rosa, Nathalia M. P.
    Arvellos, Julio A. F.
    Costa, Luiz Antonio S.
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2020, 25 (07): : 963 - 978
  • [30] Molecular dynamics simulation of non-covalent interactions between polynuclear platinum(II) complexes and DNA
    Nathália M. P. Rosa
    Júlio A. F. Arvellos
    Luiz Antônio S. Costa
    JBIC Journal of Biological Inorganic Chemistry, 2020, 25 : 963 - 978