Constructions of quantum MDS codes

被引:0
|
作者
Hualu Liu
Xiusheng Liu
机构
[1] Hubei University of Technology,School of Science
[2] Hubei Normal University,School of Arts and Science
来源
关键词
-Galois dual codes; Quantum MDS codes; GRS codes;
D O I
暂无
中图分类号
学科分类号
摘要
Let Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document} be a finite field with q=pe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=p^{e}$$\end{document} elements, where p is a prime number and e≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e \ge 1$$\end{document} is an integer. In this paper, by means of generalized Reed–Solomon codes, we construct two new classes of quantum maximum-distance-separable ( quantum MDS) codes with parameters [[q+1,2k-q-1,q-k+2]]q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}{}[[q + 1, 2k-q-1, q-k+2]]_q \end{aligned}$$\end{document}for ⌈q+22⌉≤k≤q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lceil \frac{q+2}{2}\rceil \le k\le q+1$$\end{document}, and [[n,2k-n,n-k+1]]q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}{}[[n,2k-n,n-k+1]]_q \end{aligned}$$\end{document}for n≤q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le q $$\end{document} and ⌈n2⌉≤k≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lceil \frac{n}{2}\rceil \le k\le n$$\end{document}. Our constructions improve and generalize some results available in the literature. Moreover, we give an affirmative answer to the open problem proposed by Fang et al. (Finite Fields Appl 53: 85–98, 2018).
引用
收藏
相关论文
共 50 条
  • [21] New Constructions of MDS Codes With Complementary Duals
    Chen, Bocong
    Liu, Hongwei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (08) : 5776 - 5782
  • [22] Constructions of near MDS codes which are optimal locally recoverable codes
    Li, Xiaoru
    Heng, Ziling
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 88
  • [23] Several Constructions of Near MDS Codes and Optimal Locally Recoverable Codes
    Wang X.-R.
    Heng Z.-L.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (03): : 957 - 966
  • [24] New Quantum MDS Codes
    La Guardia, Giuliano G.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) : 5551 - 5554
  • [25] On the Construction of Quantum MDS Codes
    Guo, Guanmin
    Li, Ruihu
    Guo, Luobin
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (11) : 3525 - 3539
  • [26] On the Construction of Quantum MDS Codes
    Guanmin Guo
    Ruihu Li
    Luobin Guo
    International Journal of Theoretical Physics, 2018, 57 : 3525 - 3539
  • [27] New quantum MDS codes
    Zhang, Guanghui
    Chen, Bocong
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2014, 12 (04)
  • [28] Application of Constacyclic Codes to Quantum MDS Codes
    Chen, Bocong
    Ling, San
    Zhang, Guanghui
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (03) : 1474 - 1484
  • [29] A note on the constructions of MDS self-dual codes
    Yan, Haode
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (02): : 259 - 268
  • [30] Explicit Constructions of MDS Self-Dual Codes
    Sok, Lin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (06) : 3603 - 3615