Polarization Problem on a Higher-Dimensional Sphere for a Simplex

被引:0
|
作者
Sergiy Borodachov
机构
[1] Towson University,Department of Mathematics
来源
关键词
Generalized Chebyshev constant; Maximal polarization; Potential; Sphere; Simplex; Optimal covering problem;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of maximizing the minimal value over the sphere Sd-1⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{d-1}\subset {\mathbb {R}}^d$$\end{document} of the potential generated by a configuration of d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d+1$$\end{document} points on Sd-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{d-1}$$\end{document} (the maximal discrete polarization problem). The points interact via the potential given by a function f of the Euclidean distance squared, where f:[0,4]→(-∞,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:[0,4]\rightarrow (-\infty ,\infty ]$$\end{document} is continuous (in the extended sense), decreasing on [0, 4], and finite and convex on (0, 4], with a concave or convex derivative f′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'$$\end{document}. We prove that the configuration of the vertices of a regular d-simplex inscribed in Sd-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{d-1}$$\end{document} is optimal. This result is new for d>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d>3$$\end{document} (certain special cases for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document} are also new). As a byproduct, we find a simpler proof for the known optimal covering property of the vertices of a regular d-simplex inscribed in Sd-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{d-1}$$\end{document}.
引用
收藏
页码:525 / 542
页数:17
相关论文
共 50 条
  • [41] Vacuum polarization and classical self-action near higher-dimensional defects
    Grats, Yuri V.
    Spirin, Pavel
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (02):
  • [42] Languages of higher-dimensional automata
    Fahrenberg, Uli
    Johansen, Christian
    Struth, Georg
    Ziemianski, Krzysztof
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2021, 31 (05) : 575 - 613
  • [43] Higher-dimensional origami constructions
    Banerjee, Deveena R.
    Chari, Sara
    Salerno, Adriana
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (02): : 297 - 312
  • [44] HIGHER-DIMENSIONAL FIELD THEORY
    AHNER, HF
    ANDERSON, JL
    PHYSICAL REVIEW D, 1970, 1 (02): : 488 - &
  • [45] HIGHER-DIMENSIONAL WHITE HOLES
    GURIN, VS
    TROFIMENKO, AP
    PRAMANA-JOURNAL OF PHYSICS, 1991, 36 (05): : 511 - 518
  • [46] HIGHER-DIMENSIONAL BIANCHI COSMOLOGIES
    LORENZPETZOLD, D
    PHYSICS LETTERS B, 1986, 167 (02) : 157 - 162
  • [47] Higher-dimensional DBI solitons
    Ramadhan, Handhika S.
    PHYSICAL REVIEW D, 2012, 85 (06):
  • [48] On the higher-dimensional wavelet frames
    Mu, LH
    Zhang, ZH
    Zhang, PX
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 16 (01) : 44 - 59
  • [49] CLASSIFICATION OF HIGHER-DIMENSIONAL VARIETIES
    MORI, S
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1987, 46 : 269 - 331
  • [50] Perturbations of higher-dimensional spacetimes
    Durkee, Mark
    Reall, Harvey S.
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (03)