Polarization Problem on a Higher-Dimensional Sphere for a Simplex

被引:0
|
作者
Sergiy Borodachov
机构
[1] Towson University,Department of Mathematics
来源
关键词
Generalized Chebyshev constant; Maximal polarization; Potential; Sphere; Simplex; Optimal covering problem;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of maximizing the minimal value over the sphere Sd-1⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{d-1}\subset {\mathbb {R}}^d$$\end{document} of the potential generated by a configuration of d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d+1$$\end{document} points on Sd-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{d-1}$$\end{document} (the maximal discrete polarization problem). The points interact via the potential given by a function f of the Euclidean distance squared, where f:[0,4]→(-∞,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:[0,4]\rightarrow (-\infty ,\infty ]$$\end{document} is continuous (in the extended sense), decreasing on [0, 4], and finite and convex on (0, 4], with a concave or convex derivative f′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'$$\end{document}. We prove that the configuration of the vertices of a regular d-simplex inscribed in Sd-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{d-1}$$\end{document} is optimal. This result is new for d>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d>3$$\end{document} (certain special cases for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document} are also new). As a byproduct, we find a simpler proof for the known optimal covering property of the vertices of a regular d-simplex inscribed in Sd-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{d-1}$$\end{document}.
引用
收藏
页码:525 / 542
页数:17
相关论文
共 50 条
  • [1] Polarization Problem on a Higher-Dimensional Sphere for a Simplex
    Borodachov, Sergiy
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 67 (02) : 525 - 542
  • [2] A higher-dimensional Lehmer problem
    Amoroso, F
    David, S
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 513 : 145 - 179
  • [3] A LABELING SCHEME FOR HIGHER-DIMENSIONAL SIMPLEX EQUATIONS
    KWEK, LC
    OH, CH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (21): : L521 - L524
  • [4] Visibility of the higher-dimensional central projection into the projective sphere
    Ketone, J.
    Molnar, E.
    ACTA MATHEMATICA HUNGARICA, 2009, 123 (03) : 291 - 309
  • [5] Charged perfect fluid sphere in higher-dimensional spacetime
    P. Bhar
    T. Manna
    F. Rahaman
    Saibal Ray
    G. S. Khadekar
    Indian Journal of Physics, 2020, 94 : 1679 - 1690
  • [6] Visibility of the higher-dimensional central projection into the projective sphere
    J. Katona
    E. Molnár
    Acta Mathematica Hungarica, 2009, 123 : 291 - 309
  • [7] Photon sphere uniqueness in higher-dimensional electrovacuum spacetimes
    Jahns, Sophia
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (23)
  • [8] Charged perfect fluid sphere in higher-dimensional spacetime
    Bhar, P.
    Manna, T.
    Rahaman, F.
    Ray, S.
    Khadekar, G. S.
    INDIAN JOURNAL OF PHYSICS, 2020, 94 (10) : 1679 - 1690
  • [9] Higher-Dimensional Analogues of the Map Coloring Problem
    Bagchi, Bhaskar
    Datta, Basudeb
    AMERICAN MATHEMATICAL MONTHLY, 2013, 120 (08): : 733 - 737