Modeling wildfires via marked spatio-temporal Poisson processes

被引:0
|
作者
José J. Quinlan
Carlos Díaz-Avalos
Ramsés H. Mena
机构
[1] Pontificia Universidad Católica de Chile,
[2] Universidad Nacional Autónoma de México,undefined
关键词
Dirichlet process mixture model; Posterior inference; Wildfire duration; 62F15; 62M30;
D O I
暂无
中图分类号
学科分类号
摘要
From a statistical viewpoint, characteristics such as ignition time, location and duration are relevant components for wildfire modeling. The observed ignition sites and starting times constitute a space-time point pattern, and a natural framework to model this type of data is via point processes. In this work, we propose a marked Poisson process to model fire patterns in space-time, considering durations as marks. The collected data correspond to fires observed in the Valencian Community, Spain, between 2010 and 2015. The methodology relies on writing the intensity function of such a process, jointly for starting times, locations and durations, as a weighted Dirichlet process mixture model. A particular choice of the kernel that determines such mixture was made, compatible with data features. We conducted posterior inference on some characteristics of interest for understanding wildfire behavior, showing high flexibility to emulate data patterns.
引用
收藏
页码:549 / 565
页数:16
相关论文
共 50 条
  • [21] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [22] Spatio-Temporal Point Processes With Attention for Traffic Congestion Event Modeling
    Zhu, Shixiang
    Ding, Ruyi
    Zhang, Minghe
    Van Hentenryck, Pascal
    Xie, Yao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 7298 - 7309
  • [23] Hierarchical Bayesian modeling of spatio-temporal area-interaction processes
    Chen, Jiaxun
    Micheas, Athanasios C.
    Holan, Scott H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 167
  • [24] A spatio-temporal Volterra modeling approach for a class of distributed industrial processes
    Li, Han-Xiong
    Qi, Chenkun
    Yu, Yongguang
    JOURNAL OF PROCESS CONTROL, 2009, 19 (07) : 1126 - 1142
  • [25] Spatio-Temporal Variational Gaussian Processes
    Hamelijnck, Oliver
    Wilkinson, William J.
    Loppi, Niki A.
    Solin, Arno
    Damoulas, Theodoros
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [26] Understanding Spatio-Temporal Urban Processes
    Rocha, Lais M. A.
    Bessa, Aline
    Chirigati, Fernando
    OFriel, Eugene
    Moro, Mirella M.
    Freire, Juliana
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 563 - 572
  • [27] Locally stationary spatio-temporal processes
    Matsuda, Yasumasa
    Yajima, Yoshihiro
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2018, 1 (01) : 41 - 57
  • [28] Temporal aggregation and spatio-temporal traffic modeling
    Percoco, Marco
    JOURNAL OF TRANSPORT GEOGRAPHY, 2015, 46 : 244 - 247
  • [29] Locally stationary spatio-temporal processes
    Yasumasa Matsuda
    Yoshihiro Yajima
    Japanese Journal of Statistics and Data Science, 2018, 1 (1) : 41 - 57
  • [30] Spatio-temporal Diffusion Point Processes
    Yuan, Yuan
    Ding, Jingtao
    Shao, Chenyang
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3173 - 3184