Conformally Einstein products and nearly Kähler manifolds

被引:0
|
作者
Andrei Moroianu
Liviu Ornea
机构
[1] Ecole Polytechnique,Centre de Mathémathiques
[2] University of Bucharest,Faculty of Mathematics
[3] Institute of Mathematics “Simion Stoilow” of the Romanian Academy,undefined
来源
关键词
Conformally Einstein metrics; Nearly Kähler structures; Gray–Hervella classification; Primary 53C15; 53C25; 53A30;
D O I
暂无
中图分类号
学科分类号
摘要
In the first part of this note we study compact Riemannian manifolds (M, g) whose Riemannian product with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document} is conformally Einstein. We then consider 6-dimensional almost Hermitian manifolds of type W1 + W4 in the Gray–Hervella classification admitting a parallel vector field and show that (under some mild assumption) they are obtained as Riemannian cylinders over compact Sasaki–Einstein 5-dimensional manifolds.
引用
收藏
页码:11 / 18
页数:7
相关论文
共 50 条
  • [41] Cohomogeneity one Kähler and Kähler–Einstein manifolds with one singular orbit II
    Dmitri Alekseevsky
    Fabio Zuddas
    Annals of Global Analysis and Geometry, 2020, 57 : 153 - 174
  • [42] Nearly Kähler 6-Manifolds with Reduced Holonomy
    Florin Belgun
    Andrei Moroianu
    Annals of Global Analysis and Geometry, 2001, 19 : 307 - 319
  • [43] Decomposition and minimality of lagrangian submanifolds in nearly Kähler manifolds
    Lars Schäfer
    Knut Smoczyk
    Annals of Global Analysis and Geometry, 2010, 37 : 221 - 240
  • [44] Cohomogeneity one Kähler and Kähler–Einstein manifolds with one singular orbit I
    Dmitri Alekseevsky
    Fabio Zuddas
    Annals of Global Analysis and Geometry, 2017, 52 : 99 - 128
  • [45] On the linear stability of nearly Kähler 6-manifolds
    Uwe Semmelmann
    Changliang Wang
    M. Y.-K. Wang
    Annals of Global Analysis and Geometry, 2020, 57 : 15 - 22
  • [46] On the geometry of conharmonic curvature tensor for nearly Kähler manifolds
    Kirichenko V.F.
    Shihab A.A.
    Journal of Mathematical Sciences, 2011, 177 (5) : 675 - 683
  • [47] Deformation of conic negative Kähler-Einstein manifolds
    Yan Li
    Frontiers of Mathematics in China, 2017, 12 : 597 - 606
  • [48] ON CONFORMALLY COMPACT EINSTEIN MANIFOLDS
    Chang, Sun-Yung A.
    Ge, Yuxin
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 64 (01): : 199 - 213
  • [49] On conformally Kahler, Einstein manifolds
    Chen, Xiuxiong
    Lebrun, Claude
    Weber, Brian
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (04) : 1137 - 1168
  • [50] On conformally compact Einstein manifolds
    Wang, XD
    MATHEMATICAL RESEARCH LETTERS, 2001, 8 (5-6) : 671 - 688