Conformally Einstein products and nearly Kähler manifolds

被引:0
|
作者
Andrei Moroianu
Liviu Ornea
机构
[1] Ecole Polytechnique,Centre de Mathémathiques
[2] University of Bucharest,Faculty of Mathematics
[3] Institute of Mathematics “Simion Stoilow” of the Romanian Academy,undefined
来源
关键词
Conformally Einstein metrics; Nearly Kähler structures; Gray–Hervella classification; Primary 53C15; 53C25; 53A30;
D O I
暂无
中图分类号
学科分类号
摘要
In the first part of this note we study compact Riemannian manifolds (M, g) whose Riemannian product with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document} is conformally Einstein. We then consider 6-dimensional almost Hermitian manifolds of type W1 + W4 in the Gray–Hervella classification admitting a parallel vector field and show that (under some mild assumption) they are obtained as Riemannian cylinders over compact Sasaki–Einstein 5-dimensional manifolds.
引用
收藏
页码:11 / 18
页数:7
相关论文
共 50 条
  • [1] Conformally Einstein products and nearly Kahler manifolds
    Moroianu, Andrei
    Ornea, Liviu
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 33 (01) : 11 - 18
  • [2] Compact conformally Kähler Einstein-Weyl manifolds
    Włodzimierz Jelonek
    Annals of Global Analysis and Geometry, 2013, 43 : 19 - 29
  • [3] On toric locally conformally Kähler manifolds
    Farid Madani
    Andrei Moroianu
    Mihaela Pilca
    Annals of Global Analysis and Geometry, 2017, 51 : 401 - 417
  • [4] Transformations of locally conformally Kähler manifolds
    Andrei Moroianu
    Liviu Ornea
    manuscripta mathematica, 2009, 130 : 93 - 100
  • [5] Flat nearly Kähler manifolds
    Vicente Cortés
    Lars Schäfer
    Annals of Global Analysis and Geometry, 2007, 32 : 379 - 389
  • [6] Homogeneous nearly Kähler manifolds
    J. C. González Dávila
    F. Martín Cabrera
    Annals of Global Analysis and Geometry, 2012, 42 : 147 - 170
  • [7] Toric nearly Kähler manifolds
    Andrei Moroianu
    Paul-Andi Nagy
    Annals of Global Analysis and Geometry, 2019, 55 : 703 - 717
  • [8] Isospectral nearly Kähler manifolds
    J. J. Vásquez
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2018, 88 : 23 - 50
  • [9] Locally conformally flat Kähler and para-Kähler manifolds
    M. Ferreiro-Subrido
    E. García-Río
    R. Vázquez-Lorenzo
    Annals of Global Analysis and Geometry, 2021, 59 : 483 - 500
  • [10] The Einstein–Maxwell Equations and Conformally Kähler Geometry
    Claude LeBrun
    Communications in Mathematical Physics, 2016, 344 : 621 - 653