A Liouville-Type Theorem for Fractional Elliptic Equation with Exponential Nonlinearity

被引:0
|
作者
Anh Tuan Duong
Van Hoang Nguyen
机构
[1] Hanoi University of Science and Technology,School of Applied Mathematics and Informatics
[2] FPT University,Department of Mathematics
来源
关键词
Liouville-type theorems; stable solutions; fractional elliptic equations; exponential nonlinearity; Primary 35B53; 35J60; Secondary 35B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with stable solutions to the fractional elliptic equation (-Δ)su=euinRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )^s u=e^u \text{ in } {\mathbb {R}}^{N}, \end{aligned}$$\end{document}where (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s$$\end{document} is the fractional Laplacian with 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}. By developing a new technique with non-compactly supported test functions, we establish the nonexistence of stable solutions provided that N<10s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N<10s$$\end{document}. This result is optimal when s↑1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\uparrow 1$$\end{document}. On the other hand, we believe that our technique can be used to study stable solutions of elliptic equations/systems involving the fractional Laplacian.
引用
收藏
相关论文
共 50 条
  • [41] LIOUVILLE-TYPE THEOREMS FOR AN ELLIPTIC SYSTEM INVOLVING FRACTIONAL LAPLACIAN OPERATORS WITH MIXED ORDER
    Jleli, Mohamed
    Samet, Bessem
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [42] Liouville-type theorem for the drifting Laplacian operator
    Guangyue Huang
    Congcong Zhang
    Jing Zhang
    Archiv der Mathematik, 2011, 96 : 379 - 385
  • [43] Remarks on a Liouville-Type Theorem for Beltrami Flows
    Chae, Dongho
    Constantin, Peter
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (20) : 10012 - 10016
  • [44] A Liouville-type theorem in conformally invariant equations
    Li, Mingxiang
    MATHEMATISCHE ANNALEN, 2024, 389 (03) : 2499 - 2517
  • [45] A Liouville-type theorem for the stationary MHD equations
    Cho, Youseung
    Neustupa, Jiri
    Yang, Minsuk
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 73
  • [46] A Liouville-type theorem on halfspaces for the Kohn Laplacian
    Uguzzoni, F
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) : 117 - 123
  • [47] Liouville-type theorem for the drifting Laplacian operator
    Huang, Guangyue
    Zhang, Congcong
    Zhang, Jing
    ARCHIV DER MATHEMATIK, 2011, 96 (04) : 379 - 385
  • [48] A LIOUVILLE-TYPE THEOREM FOR SOME WEINGARTEN HYPERSURFACES
    Sakaguchi, Shigeru
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (04): : 887 - 895
  • [49] Liouville-type theorem for the stationary fractional compressible MHD system in anisotropic Lebesgue spaces
    Pei, Wenda
    Zeng, Yong
    ELECTRONIC RESEARCH ARCHIVE, 2025, 33 (03): : 1306 - 1322
  • [50] Liouville-type theorem for nonlinear elliptic equations involving p-Laplace-type Grushin operators
    Wei, Yunfeng
    Chen, Caisheng
    Chen, Qiang
    Yang, Hongwei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (01) : 320 - 333