A Liouville-Type Theorem for Fractional Elliptic Equation with Exponential Nonlinearity

被引:0
|
作者
Anh Tuan Duong
Van Hoang Nguyen
机构
[1] Hanoi University of Science and Technology,School of Applied Mathematics and Informatics
[2] FPT University,Department of Mathematics
来源
关键词
Liouville-type theorems; stable solutions; fractional elliptic equations; exponential nonlinearity; Primary 35B53; 35J60; Secondary 35B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with stable solutions to the fractional elliptic equation (-Δ)su=euinRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )^s u=e^u \text{ in } {\mathbb {R}}^{N}, \end{aligned}$$\end{document}where (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s$$\end{document} is the fractional Laplacian with 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}. By developing a new technique with non-compactly supported test functions, we establish the nonexistence of stable solutions provided that N<10s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N<10s$$\end{document}. This result is optimal when s↑1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\uparrow 1$$\end{document}. On the other hand, we believe that our technique can be used to study stable solutions of elliptic equations/systems involving the fractional Laplacian.
引用
收藏
相关论文
共 50 条