Quasi-Stationary States for Particle Systems in the Mean-Field Limit

被引:0
|
作者
E. Caglioti
F. Rousset
机构
[1] Universita di Roma I,Dipartimento di Matematica
[2] Universite de Nice,CNRS, Laboratoire J.
来源
关键词
-particle systems; Vlasov equation; Long-time estimates; Metastability;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the N particles approximation of a class of stable stationary solutions of the Vlasov equation is uniformly valid on a time scale Nβ for β>0 (explicitly given in various cases) much longer than the usual log N scale. The vortex blob method in dimension 2 is also discussed. The result applies to a class of stationary solutions more general than in a previous work.
引用
收藏
页码:241 / 263
页数:22
相关论文
共 50 条
  • [41] Mean-field approximation of quantum systems and classical limit
    Graffi, S
    Martinez, A
    Pulvirenti, M
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (01): : 59 - 73
  • [42] Mean-field limit of non-exchangeable systems
    Jabin, Pierre-Emmanuel
    Poyato, David
    Soler, Juan
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2025, 78 (04) : 651 - 741
  • [43] The classical limit of mean-field quantum spin systems
    van de Ven, Christiaan J. F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (12)
  • [44] Existence of quasi-stationary measures for asymmetric attractive particle systems on Zd
    Asselah, A
    Castell, F
    ANNALS OF APPLIED PROBABILITY, 2003, 13 (04): : 1569 - 1590
  • [45] The lack of the stabilization of quasi-stationary electron states in a strong magnetic field
    Rodionov, VN
    Kravtsova, GA
    Mandel', AM
    DOKLADY PHYSICS, 2002, 47 (10) : 725 - 727
  • [46] Absence of stabilization of quasi-stationary states of an electron in the strong magnetic field
    Rodionov, V.N.
    Kravtsova, G.A.
    Mandel', A.M.
    Doklady Akademii Nauk, 2002, 386 (06) : 753 - 756
  • [47] The lack of the stabilization of quasi-stationary electron states in a strong magnetic field
    V. N. Rodionov
    G. A. Kravtsova
    A. M. Mandel’
    Doklady Physics, 2002, 47 : 725 - 727
  • [48] Quasi-stationary chaotic states in multi-dimensional Hamiltonian systems
    Antonopoulos, Ch.
    Bountis, T.
    Basios, V.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (20) : 3290 - 3307
  • [49] NONPARAMETRIC IDENTIFICATION OF QUASI-STATIONARY SYSTEMS
    RUTKOWSKI, L
    SYSTEMS & CONTROL LETTERS, 1985, 6 (01) : 33 - 35
  • [50] Quasi-stationary states of game-driven systems: A dynamical approach
    Denisov, Sergey
    Vershinina, Olga
    Thingna, Juzar
    Haenggi, Peter
    Ivanchenko, Mikhail
    CHAOS, 2020, 30 (12)