Synergistic attention U-Net for sublingual vein segmentation

被引:2
|
作者
Tingxiao Yang
Yuichiro Yoshimura
Akira Morita
Takao Namiki
Toshiya Nakaguchi
机构
[1] Chiba University,Graduate School of Science and Technology
[2] Chiba University,Center for Frontier Medical Engineering
[3] Chiba University,Graduate School of Medicine
来源
关键词
Tongue; Sublingual veins; Segmentation; Synergistic; Attention; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
The tongue is one of the most sensitive organs of the human body. The changes in the tongue indicate the changes of the human state. One of the features of the tongue, which can be used to inspect the blood circulation of human, is the shape information of the sublingual vein. Therefore, this paper aims to segment the sublingual vein from the RGB images of the tongue. In traditional segmentation network training based on deep learning, the resolution of the input image is generally resized to save training costs. However, the size of the sublingual vein is much smaller than the size of the tongue relative to the entire image. The resized inputs are likely to cause the network to fail to capture target information for the smaller segmentation and produce an “all black” output. This study first pointed out that the training of the segmentation of the sublingual vein compared to the tongue segmentation is much more difficult through a small dataset. At the same time, we also compared the effects of different input sizes on small sublingual segmentation. In response to the problems that arise, we propose a synergistic attention network. By dismembering the entire encoder–decoder framework and updating the parameters synergistically, the proposed network can not only improve the convergence speed of training process, but also avoid the problem of falling into the optimal local solution and maintains the stability of training without increasing the training cost and additional regional auxiliary labels.
引用
收藏
页码:550 / 559
页数:9
相关论文
共 50 条
  • [21] Study on Echocardiographic Image Segmentation Based on Attention U-Net
    Wang, Kai
    Zhang, Jiwei
    Hachiya, Hirotaka
    Wu, Haiyuan
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 1091 - 1096
  • [22] Brain Tumor Segmentation with Attention-based U-Net
    Li, Tuofu
    Liu, Javin Jia
    Tai, Yintao
    Tian, Yuxuan
    SECOND IYSF ACADEMIC SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING, 2021, 12079
  • [23] AResU-Net: Attention Residual U-Net for Brain Tumor Segmentation
    Zhang, Jianxin
    Lv, Xiaogang
    Zhang, Hengbo
    Liu, Bin
    SYMMETRY-BASEL, 2020, 12 (05):
  • [24] DAU-Net: Dense Attention U-Net for Pavement Crack Segmentation
    Hsieh, Yung-An
    Tsai, Yi-Chang James
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2251 - 2256
  • [25] OAU-net: Outlined Attention U-net for biomedical image segmentation
    Song, Haojie
    Wang, Yuefei
    Zeng, Shijie
    Guo, Xiaoyan
    Li, Zheheng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [26] CS U-NET: A Medical Image Segmentation Method Integrating Spatial and Contextual Attention Mechanisms Based on U-NET
    Zhang, Fanyang
    Fan, Zhang
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2025, 35 (02)
  • [27] Boosting Unsupervised Dorsal Hand Vein Segmentation with U-Net Variants
    Lefkovits, Szidonia
    Emerich, Simina
    Lefkovits, Laszlo
    MATHEMATICS, 2022, 10 (15)
  • [28] FAU-Net: An Attention U-Net Extension with Feature Pyramid Attention for Prostate Cancer Segmentation
    Quihui-Rubio, Pablo Cesar
    Flores-Araiza, Daniel
    Gonzalez-Mendoza, Miguel
    Mata, Christian
    Ochoa-Ruiz, Gilberto
    ADVANCES IN SOFT COMPUTING, MICAI 2023, PT II, 2024, 14392 : 165 - 176
  • [29] ASCU-Net: Attention Gate, Spatial and Channel Attention U-Net for Skin Lesion Segmentation
    Tong, Xiaozhong
    Wei, Junyu
    Sun, Bei
    Su, Shaojing
    Zuo, Zhen
    Wu, Peng
    DIAGNOSTICS, 2021, 11 (03)
  • [30] Multiscale U-Net with Spatial Positional Attention for Retinal Vessel Segmentation
    Liu, Congjun
    Gu, Penghui
    Xiao, Zhiyong
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022