Simplified U-Net as a deep learning intelligent medical assistive tool in glaucoma detection

被引:0
|
作者
Amirhossein Panahi
Reza Askari Moghadam
Bahram Tarvirdizadeh
Kurosh Madani
机构
[1] University of Tehran,Faculty of New Sciences and Technologies
[2] University Paris Est-Creteil (UPEC),LISSI Lab, Senart
来源
Evolutionary Intelligence | 2024年 / 17卷
关键词
Deep learning; Simplified U-Net; Image processing; Glaucoma; Optic disc segmentation; Blood vessel segmentation; Medical applications;
D O I
暂无
中图分类号
学科分类号
摘要
Glaucoma is looked on as the most important cause of irremediable vision loss worldwide. Early detection of eye diseases, especially glaucoma is serious for preparing timely medical care and keep downing the vision loss. In this paper, a fast segmentation algorithm is proposed which is based on a new simplified U-Net architecture for optic disc and retinal vessels segmentation. The proposed method includes a modified and reinforced structure that will reduce the prediction time while maintaining the performance and accuracy at an comparable level due to other state of the art methods. For example, for optic disc segmentation, the proposed method can segment the optic disc in 0.008 seconds on DRIONS-DB dataset, and for vessels segmentation,it can segment in 0.03 seconds on DRIVE dataset. According to these results and an extension of the proposed method can be used as a real-time intelligent medical system which able to be implemented on the usual hardware equipement in the ophthalmology clinics. This method, which can perform optic disc and retinal vessels segmentation tasks in a short time, increases the performance of ophthalmologists in glaucoma diagnosing.
引用
收藏
页码:1023 / 1034
页数:11
相关论文
共 50 条
  • [31] SPF-Net: Solar panel fault detection using U-Net based deep learning image classification
    Rudro, Rifat Al Mamun
    Nur, Kamruddin
    Al Sohan, Md. Faruk Abdullah
    Mridha, M. F.
    Alfarhood, Sultan
    Safran, Mejdl
    Kanagarathinam, Karthick
    ENERGY REPORTS, 2024, 12 : 1580 - 1594
  • [32] A Novel Deep Learning Model for Pancreas Segmentation: Pascal U-Net
    Kurnaz, Ender
    Ceylan, Rahime
    Bozkurt, Mustafa Alper
    Cebeci, Hakan
    Koplay, Mustafa
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAN JOURNAL OF ARTIFICIAL INTELLIGENCE, 2024, 27 (74): : 22 - 36
  • [33] Deep Learning Logging Sedimentary Microfacies via Improved U-Net
    Cai, Hanpeng
    Hu, Yongxiang
    Zhang, Liyu
    Su, Mingjun
    Yuan, Cheng
    Zhao, Yuting
    APPLIED SCIENCES-BASEL, 2023, 13 (19):
  • [34] Bladder Wall Segmentation using U-Net based Deep Learning
    Ivanitskiy, Michael
    Hadjiiski, Lubomir
    Chan, Heang-Ping
    Samala, Ravi
    Cohan, Richard H.
    Caoili, Elaine M.
    Weizer, Alon
    Alva, Ajjai
    Wei, Jun
    Zhou, Chuan
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [35] Surface Defect Detection Using Deep U-Net Network Architectures
    Uzen, Huseyin
    Turkoglu, Muammer
    Hanbay, Davut
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [36] Deep Learning Model Development with U-net Architecture for Glottis Segmentation
    Derdiman, Yasar Said
    Koc, Turgay
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [37] Enhancing seismic resolution based on U-Net deep learning network
    Li, Zeyu
    Wang, Guoquan
    Zhu, Chenghong
    Chen, Shuangquan
    JOURNAL OF SEISMIC EXPLORATION, 2023, 32 (04): : 315 - 336
  • [38] Deep Learning with Limited Data: Organ Segmentation Performance by U-Net
    Bardis, Michelle
    Houshyar, Roozbeh
    Chantaduly, Chanon
    Ushinsky, Alexander
    Glavis-Bloom, Justin
    Shaver, Madeleine
    Chow, Daniel
    Uchio, Edward
    Chang, Peter
    ELECTRONICS, 2020, 9 (08) : 1 - 12
  • [39] Infrared Small Object Detection Using Deep Interactive U-Net
    Wu, Xin
    Hong, Danfeng
    Huang, Zhanchao
    Chanussot, Jocelyn
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [40] A deep learning method based on U-Net for quantitative photoacoustic imaging
    Chen, Tingting
    Lu, Tong
    Song, Shaoze
    Miao, Shichao
    Gao, Feng
    Li, Jiao
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2020, 2020, 11240