Simplified U-Net as a deep learning intelligent medical assistive tool in glaucoma detection

被引:0
|
作者
Amirhossein Panahi
Reza Askari Moghadam
Bahram Tarvirdizadeh
Kurosh Madani
机构
[1] University of Tehran,Faculty of New Sciences and Technologies
[2] University Paris Est-Creteil (UPEC),LISSI Lab, Senart
来源
Evolutionary Intelligence | 2024年 / 17卷
关键词
Deep learning; Simplified U-Net; Image processing; Glaucoma; Optic disc segmentation; Blood vessel segmentation; Medical applications;
D O I
暂无
中图分类号
学科分类号
摘要
Glaucoma is looked on as the most important cause of irremediable vision loss worldwide. Early detection of eye diseases, especially glaucoma is serious for preparing timely medical care and keep downing the vision loss. In this paper, a fast segmentation algorithm is proposed which is based on a new simplified U-Net architecture for optic disc and retinal vessels segmentation. The proposed method includes a modified and reinforced structure that will reduce the prediction time while maintaining the performance and accuracy at an comparable level due to other state of the art methods. For example, for optic disc segmentation, the proposed method can segment the optic disc in 0.008 seconds on DRIONS-DB dataset, and for vessels segmentation,it can segment in 0.03 seconds on DRIVE dataset. According to these results and an extension of the proposed method can be used as a real-time intelligent medical system which able to be implemented on the usual hardware equipement in the ophthalmology clinics. This method, which can perform optic disc and retinal vessels segmentation tasks in a short time, increases the performance of ophthalmologists in glaucoma diagnosing.
引用
收藏
页码:1023 / 1034
页数:11
相关论文
共 50 条
  • [1] Simplified U-Net as a deep learning intelligent medical assistive tool in glaucoma detection
    Panahi, Amirhossein
    Moghadam, Reza Askari
    Tarvirdizadeh, Bahram
    Madani, Kurosh
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (02) : 1023 - 1034
  • [2] Glaucoma Detection and Classification Using Improved U-Net Deep Learning Model
    Kashyap, Ramgopal
    Nair, Rajit
    Gangadharan, Syam Machinathu Parambil
    Botto-Tobar, Miguel
    Farooq, Saadia
    Rizwan, Ali
    HEALTHCARE, 2022, 10 (12)
  • [3] Underwater U-Net: Deep Learning with U-Net for Visual Underwater Moving Object detection
    Bajpai, Vatsalya
    Sharma, Akhilesh
    Subudhi, Badri Narayan
    Veerakumar, T.
    Jakhetiya, Vinit
    OCEANS 2021: SAN DIEGO - PORTO, 2021,
  • [4] Segmentation and Classification of Glaucoma Using U-Net with Deep Learning Model
    Sudhan, M. B.
    Sinthuja, M.
    Raja, S. Pravinth
    Amutharaj, J.
    Latha, G. Charlyn Pushpa
    Rachel, S. Sheeba
    Anitha, T.
    Rajendran, T.
    Waji, Yosef Asrat
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [5] Segmentation of Optic Nerve images for glaucoma detection, using U-Net Deep Learning Model
    Belalcazar, Sandra
    Rodriguez, Francisco
    Rosensthiel, Shirley
    Carvajal, Claudia
    Perdomo, Oscar
    Carpio-Rosso, Vanessa
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [6] U-Net: deep learning for cell counting, detection, and morphometry
    Falk, Thorsten
    Mai, Dominic
    Bensch, Robert
    Cicek, Oezguen
    Abdulkadir, Ahmed
    Marrakchi, Yassine
    Boehm, Anton
    Deubner, Jan
    Jaeckel, Zoe
    Seiwald, Katharina
    Dovzhenko, Alexander
    Tietz, Olaf
    Dal Bosco, Cristina
    Walsh, Sean
    Saltukoglu, Deniz
    Tay, Tuan Leng
    Prinz, Marco
    Palme, Klaus
    Simons, Matias
    Diester, Ilka
    Brox, Thomas
    Ronneberger, Olaf
    NATURE METHODS, 2019, 16 (01) : 67 - +
  • [7] U-Net: deep learning for cell counting, detection, and morphometry
    Thorsten Falk
    Dominic Mai
    Robert Bensch
    Özgün Çiçek
    Ahmed Abdulkadir
    Yassine Marrakchi
    Anton Böhm
    Jan Deubner
    Zoe Jäckel
    Katharina Seiwald
    Alexander Dovzhenko
    Olaf Tietz
    Cristina Dal Bosco
    Sean Walsh
    Deniz Saltukoglu
    Tuan Leng Tay
    Marco Prinz
    Klaus Palme
    Matias Simons
    Ilka Diester
    Thomas Brox
    Olaf Ronneberger
    Nature Methods, 2019, 16 : 67 - 70
  • [8] Flexible U-Net with Transfer Learning for Optic Disc Segmentation in Glaucoma Detection
    Kalyanasundaram, V.
    Keerthi, A.J.
    Prethija, G.
    2024 3rd International Conference on Electrical, Electronics, Information and Communication Technologies, ICEEICT 2024, 2024,
  • [9] Author Correction: U-Net: deep learning for cell counting, detection, and morphometry
    Thorsten Falk
    Dominic Mai
    Robert Bensch
    Özgün Çiçek
    Ahmed Abdulkadir
    Yassine Marrakchi
    Anton Böhm
    Jan Deubner
    Zoe Jäckel
    Katharina Seiwald
    Alexander Dovzhenko
    Olaf Tietz
    Cristina Dal Bosco
    Sean Walsh
    Deniz Saltukoglu
    Tuan Leng Tay
    Marco Prinz
    Klaus Palme
    Matias Simons
    Ilka Diester
    Thomas Brox
    Olaf Ronneberger
    Nature Methods, 2019, 16 : 351 - 351
  • [10] Seismic data fault detection based on U-Net deep learning network
    Yang W.
    Yang J.
    Chen S.
    Kuang L.
    Wang E.
    Zhou C.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2021, 56 (04): : 688 - 697