On Integrability of a (2+1)-Dimensional Perturbed KdV Equation

被引:0
|
作者
S. Yu. Sakovich
机构
[1] National Academy of Sciences,Institute of Physics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A (2+1)-dimensional perturbed KdV equation, recently introduced by W.X. Ma and B. Fuchssteiner, is proven to pass the Painlevé test for integrability well, and its 4×4 Lax pair with two spectral parameters is found. The results show that the Painlevé classification of coupled KdV equations by A. Karasu should be revised.
引用
收藏
页码:230 / 233
页数:3
相关论文
共 50 条
  • [41] Conditional similarity solutions of (2+1)-dimensional general nonintegrable KdV equation
    Tang, XY
    Lou, SY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 37 (02) : 139 - 144
  • [42] Soliton-like solutions for a (2+1)-dimensional nonintegrable KdV equation and a variable-coefficient KdV equation
    Chen, Y
    Li, B
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2003, 118 (08): : 767 - 776
  • [43] On the lump interaction phenomena to the conformable fractional (2+1)-dimensional KdV equation
    Younas, Usman
    Sulaiman, T. A.
    Ismael, Hajar F.
    Shah, Nehad Ali
    Eldin, Sayed M.
    RESULTS IN PHYSICS, 2023, 52
  • [44] Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials
    Li, Chunhui
    Zhu, Mengkun
    Wang, Dan
    Zhang, Jinyu
    Wang, Xiaoli
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [46] Integrability and exact solutions of the (2+1)-dimensional variable coefficient Ito equation
    Jingyi Chu
    Yaqing Liu
    Xin Chen
    Nonlinear Dynamics, 2024, 112 : 1307 - 1325
  • [47] A novel(2+1)-dimensional integrable KdV equation with peculiar solution structures
    楼森岳
    Chinese Physics B, 2020, 29 (08) : 209 - 214
  • [48] Spatiotemporal deformation of multi-soliton to (2+1)-dimensional KdV equation
    Liu, Jun
    Mu, Gui
    Dai, Zhengde
    Luo, Hongying
    NONLINEAR DYNAMICS, 2016, 83 (1-2) : 355 - 360
  • [49] A Series of Exact Solutions for a New(2+1)-Dimensional Calogero KdV Equation
    BIAN Xue-Jun Department of Mathematics
    Communications in Theoretical Physics, 2005, 44 (11) : 815 - 820
  • [50] Periodic waves and periodic solitons and their interactions for a (2+1)-dimensional KdV equation
    Peng, YZ
    PROGRESS OF THEORETICAL PHYSICS, 2005, 113 (05): : 927 - 933