On Integrability of a (2+1)-Dimensional Perturbed KdV Equation

被引:0
|
作者
S. Yu. Sakovich
机构
[1] National Academy of Sciences,Institute of Physics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A (2+1)-dimensional perturbed KdV equation, recently introduced by W.X. Ma and B. Fuchssteiner, is proven to pass the Painlevé test for integrability well, and its 4×4 Lax pair with two spectral parameters is found. The results show that the Painlevé classification of coupled KdV equations by A. Karasu should be revised.
引用
收藏
页码:230 / 233
页数:3
相关论文
共 50 条
  • [1] On integrability of a (2+1)-dimensional perturbed KdV equation
    Sakovich, SY
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1998, 5 (03) : 230 - 233
  • [2] Integrability and lump solutions to an extended (2+1)-dimensional KdV equation
    Cheng, Li
    Ma, Wen Xiu
    Zhang, Yi
    Ge, Jian Ya
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (08):
  • [3] Integrability and lump solutions to an extended (2+1)-dimensional KdV equation
    Li Cheng
    Wen Xiu Ma
    Yi Zhang
    Jian Ya Ge
    The European Physical Journal Plus, 137
  • [4] Integrability and Exact Solutions of the (2+1)-dimensional KdV Equation with Bell Polynomials Approach
    Pu, Jun-cai
    Chen, Yong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (04): : 861 - 881
  • [5] Integrability and Exact Solutions of the (2+1)-dimensional KdV Equation with Bell Polynomials Approach
    Jun-cai Pu
    Yong Chen
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 861 - 881
  • [6] Integrability and Exact Solutions of the(2+1)-dimensional KdV Equation with Bell Polynomials Approach
    Jun-cai PU
    Yong CHEN
    ActaMathematicaeApplicataeSinica, 2022, 38 (04) : 861 - 881
  • [7] Integrability and Exact Solutions for a (2+1)-dimensional Variable-Coefficient KdV Equation
    Zhang Yu
    Xu Gui-Qiong
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2014, 9 (02): : 646 - 658
  • [8] A (2+1)-dimensional combined KdV–mKdV equation: integrability, stability analysis and soliton solutions
    Sandeep Malik
    Sachin Kumar
    Amiya Das
    Nonlinear Dynamics, 2022, 107 : 2689 - 2701
  • [9] Integrability test of a higher-order (2+1)-dimensional KdV-type equation
    Gordoa, P. R.
    Pickering, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) : 489 - 490
  • [10] N-soliton solutions and associated integrability for a novel (2+1)-dimensional generalized KdV equation
    Lu, Xing
    Chen, Si-Jia
    CHAOS SOLITONS & FRACTALS, 2023, 169