Random Approximation of Convex Bodies: Monotonicity of the Volumes of Random Tetrahedra

被引:0
|
作者
Stefan Kunis
Benjamin Reichenwallner
Matthias Reitzner
机构
[1] Universität Osnabrück,Institut für Mathematik
[2] Universität Salzburg,Fachbereich Mathematik
来源
Discrete & Computational Geometry | 2018年 / 59卷
关键词
Approximation of convex sets; Random convex hull; Extreme points; Random simplex; Sample range; Primary 52A22; Secondary 60D05;
D O I
暂无
中图分类号
学科分类号
摘要
Choose uniform random points X1,⋯,Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_1, \dots , X_n$$\end{document} in a given convex set and let conv[X1,⋯,Xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text { conv}}[X_1, \dots , X_n]$$\end{document} be their convex hull. It is shown that in dimension three the expected volume of this convex hull is in general not monotone with respect to set inclusion. This answers a question by Meckes in the negative. The given counterexample is formed by uniformly distributed points in the three-dimensional tetrahedron together with a small perturbation of it. As side result we obtain an explicit formula for all even moments of the volume of a random simplex which is the convex hull of three uniform random points in the tetrahedron and the center of one facet.
引用
收藏
页码:165 / 174
页数:9
相关论文
共 50 条
  • [1] Random Approximation of Convex Bodies: Monotonicity of the Volumes of Random Tetrahedra
    Kunis, Stefan
    Reichenwallner, Benjamin
    Reitzner, Matthias
    DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 59 (01) : 165 - 174
  • [2] Random polytopes, convex bodies, and approximation
    Barany, Imre
    STOCHASTIC GEOMETRY, 2007, 1892 : 77 - 118
  • [3] Approximation of smooth convex bodies by random polytopes
    Grote, Julian
    Werner, Elisabeth
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [4] Random approximation and the vertex index of convex bodies
    Silouanos Brazitikos
    Giorgos Chasapis
    Labrini Hioni
    Archiv der Mathematik, 2017, 108 : 209 - 221
  • [5] Random approximation and the vertex index of convex bodies
    Brazitikos, Silouanos
    Chasapis, Giorgos
    Hioni, Labrini
    ARCHIV DER MATHEMATIK, 2017, 108 (02) : 209 - 221
  • [6] Approximation of smooth convex bodies by random circumscribed polytopes
    Boroczky, K
    Reitzner, M
    ANNALS OF APPLIED PROBABILITY, 2004, 14 (01): : 239 - 273
  • [7] INTRINSIC VOLUMES OF INSCRIBED RANDOM POLYTOPES IN SMOOTH CONVEX BODIES
    Barany, I.
    Fodor, F.
    Vigh, V.
    ADVANCES IN APPLIED PROBABILITY, 2010, 42 (03) : 605 - 619
  • [8] ON THE MONOTONICITY OF THE MOMENTS OF VOLUMES OF RANDOM SIMPLICES
    Reichenwallner, Benjamin
    Reitzner, Matthias
    MATHEMATIKA, 2016, 62 (03) : 949 - 958
  • [9] Random Sections of Convex Bodies
    Moseeva T.
    Journal of Mathematical Sciences, 2021, 258 (6) : 867 - 872
  • [10] RANDOM SYMMETRIZATIONS OF CONVEX BODIES
    Coupier, D.
    Davydov, Yu.
    ADVANCES IN APPLIED PROBABILITY, 2014, 46 (03) : 603 - 621