Random approximation and the vertex index of convex bodies

被引:4
|
作者
Brazitikos, Silouanos [1 ]
Chasapis, Giorgos [1 ]
Hioni, Labrini [1 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Math, Athens 15784, Greece
关键词
Convex bodies; Isotropic position; Centroid bodies; Random polytopal approximation;
D O I
10.1007/s00013-016-0975-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there exists an absolute constant with the following property: if K is a convex body in whose center of mass is at the origin, then a random subset of cardinality satisfies with probability greater than K subset of c(2)n conv(X) where are absolute constants. As an application we show that the vertex index of any convex body K in is bounded by , where is an absolute constant, thus extending an estimate of Bezdek and Litvak for the symmetric case.
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [1] Random approximation and the vertex index of convex bodies
    Silouanos Brazitikos
    Giorgos Chasapis
    Labrini Hioni
    Archiv der Mathematik, 2017, 108 : 209 - 221
  • [2] On the vertex index of convex bodies
    Bezdek, K.
    Litvak, A. E.
    ADVANCES IN MATHEMATICS, 2007, 215 (02) : 626 - 641
  • [3] A Remark on Vertex Index of the Convex Bodies
    Gluskin, Efim D.
    Litvak, Alexander E.
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR 2006-2010, 2012, 2050 : 255 - 265
  • [4] Random polytopes, convex bodies, and approximation
    Barany, Imre
    STOCHASTIC GEOMETRY, 2007, 1892 : 77 - 118
  • [5] Asymmetry of Convex Polytopes and Vertex Index of Symmetric Convex Bodies
    E. D. Gluskin
    A. E. Litvak
    Discrete & Computational Geometry, 2008, 40 : 528 - 536
  • [6] Asymmetry of Convex Polytopes and Vertex Index of Symmetric Convex Bodies
    Gluskin, E. D.
    Litvak, A. E.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 40 (04) : 528 - 536
  • [7] Approximation of smooth convex bodies by random polytopes
    Grote, Julian
    Werner, Elisabeth
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [8] Random Approximation of Convex Bodies: Monotonicity of the Volumes of Random Tetrahedra
    Kunis, Stefan
    Reichenwallner, Benjamin
    Reitzner, Matthias
    DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 59 (01) : 165 - 174
  • [9] Random Approximation of Convex Bodies: Monotonicity of the Volumes of Random Tetrahedra
    Stefan Kunis
    Benjamin Reichenwallner
    Matthias Reitzner
    Discrete & Computational Geometry, 2018, 59 : 165 - 174
  • [10] Approximation of smooth convex bodies by random circumscribed polytopes
    Boroczky, K
    Reitzner, M
    ANNALS OF APPLIED PROBABILITY, 2004, 14 (01): : 239 - 273