Coherent States and Quantum Asymptotic Features by Weak KAM Theory

被引:0
|
作者
Franco Cardin
Simone Vazzoler
机构
[1] Università degli Studi di Padova,Dip. Matematica
来源
关键词
Quantum Mechanics; Coherent states; Weak KAM theory;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a sketch for a proof of an interesting theorem on the evolution of coherent states, whose statement has been first presented in Paul (Séminaire: Équations aux Dérivées Partielles. 2007–2008, pages Exp. No. IV, 21. École Polytech., Palaiseau, 2009), and give some further insights on the asymptotic behavior, involving weak KAM theory.
引用
收藏
页码:189 / 197
页数:8
相关论文
共 50 条
  • [21] Quantum Security in Homodyne Reception Using Weak Coherent States
    Garcia, E.
    Lopez, J. A.
    Mendieta, F. J.
    Arvizu, A.
    22ND CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: LIGHT FOR THE DEVELOPMENT OF THE WORLD, 2011, 8011
  • [22] KAM theorem and quantum field theory
    Bricmont, J
    Gawedzki, K
    Kupiainen, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) : 699 - 727
  • [23] KAM Theorem and Quantum Field Theory
    Jean Bricmont
    Krzysztof Gawędzki
    Antti Kupiainen
    Communications in Mathematical Physics, 1999, 201 : 699 - 727
  • [24] Asymptotic quantum estimation theory for the thermal states family
    Hayashi, M
    QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 2, 2000, : 99 - 104
  • [25] Dynamic and asymptotic behavior of singularities of certain weak KAM solutions on the torus
    Cannarsa, Piermarco
    Chen, Qinbo
    Cheng, Wei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (04) : 2448 - 2470
  • [26] Weak KAM Theory topics in the stationary ergodic setting
    Davini, Andrea
    Siconolfi, Antonio
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 44 (3-4) : 319 - 350
  • [27] Some new PDE methods for weak KAM theory
    Evans, LC
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 17 (02) : 159 - 177
  • [28] Weak KAM theory for action minimizing random walks
    Kohei Soga
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [29] On weak KAM theory for N-body problems
    Maderna, Ezequiel
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 1019 - 1041
  • [30] Weak KAM theory for action minimizing random walks
    Soga, Kohei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)