On multiobjective fractional programs

被引:0
|
作者
Zeng R. [1 ]
机构
[1] Dept. of Math, and Statist, University of Regina
关键词
Geoffrion proper efficient solution; Mond-Weir duality; Strictly invex; Weak efficient solution;
D O I
10.1007/s11766-000-0029-0
中图分类号
学科分类号
摘要
In this paper some optimality criteria are proved and some Mond-Weir type duality theorem for multiobjective fractional programming problems defined in a Banach space is obtained. © 2000 Springer Verlag.
引用
收藏
页码:220 / 224
页数:4
相关论文
共 50 条
  • [31] Weak ε-efficiency conditions for multiobjective fractional programming
    Verma, Ram U.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (12) : 6819 - 6827
  • [32] The tolerance approach in multiobjective linear fractional programming
    M. T. Arévalo
    A. M. Mármol
    A. Zapata
    Top, 1997, 5 (2) : 241 - 252
  • [33] Nonconvex composite multiobjective nonsmooth fractional programming
    Kim, Ho Jung
    Kim, Do Sang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [35] Multiobjective DC programs with infinite convex constraints
    Qu, Shaojian
    Goh, Mark
    Wu, Soon-Yi
    De Souza, Robert
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 59 (01) : 41 - 58
  • [36] Optimality Conditions and Duality in Nonsmooth Multiobjective Programs
    Kim, Do Sang
    Lee, Hyo Jung
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [37] Optimality Conditions and Duality in Nonsmooth Multiobjective Programs
    DoSang Kim
    HyoJung Lee
    Journal of Inequalities and Applications, 2010
  • [38] Multiobjective fractional programming under generalized invexity
    Mukherjee, RN
    Rao, CP
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1996, 27 (12): : 1175 - 1183
  • [39] DUALITY FOR MULTIOBJECTIVE FRACTIONAL VARIATIONAL-PROBLEMS
    MISHRA, SK
    MUKHERJEE, RN
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 186 (03) : 711 - 725
  • [40] Two types of duality in multiobjective fractional programming
    Coladas, L
    Li, Z
    Wang, S
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 54 (01) : 99 - 114