Onsager’s Conjecture on the Energy Conservation for Solutions of Euler Equations in Bounded Domains

被引:0
|
作者
Quoc-Hung Nguyen
Phuoc-Tai Nguyen
机构
[1] Scuola Normale Superiore,Faculty of Science, Department of Mathematics and Statistics
[2] Masaryk University,undefined
来源
关键词
Onsager’s conjecture; Energy conservation; Euler equation; 35Q31; 76B03;
D O I
暂无
中图分类号
学科分类号
摘要
The Onsager’s conjecture has two parts: conservation of energy, if the exponent is larger than 1 / 3, and the possibility of dissipative Euler solutions, if the exponent is less than or equal to 1 / 3. The paper proves half of the conjecture, the conservation part, in bounded domains.
引用
收藏
页码:207 / 213
页数:6
相关论文
共 50 条
  • [21] On the Extension of Onsager’s Conjecture for General Conservation Laws
    Claude Bardos
    Piotr Gwiazda
    Agnieszka Świerczewska-Gwiazda
    Edriss S. Titi
    Emil Wiedemann
    Journal of Nonlinear Science, 2019, 29 : 501 - 510
  • [22] Energy conservation for the incompressible inhomogeneous Euler-Korteweg equations in a bounded domain
    Zhang, Zhipeng
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (10)
  • [23] Onsager's Conjecture for the Incompressible Euler Equations in the Holog Spaces Cλ0,α ((Ω)over-bar)
    da Veiga, Hugo Beira
    Yang, Jiaqi
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (02)
  • [24] An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations
    Theodore D. Drivas
    Gregory L. Eyink
    Communications in Mathematical Physics, 2018, 359 : 733 - 763
  • [25] An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations
    Drivas, Theodore D.
    Eyink, Gregory L.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 359 (02) : 733 - 763
  • [26] Onsager's Energy Conservation of Weak Solutions for a Compressible and Inviscid Fluid
    Wu, Xinglong
    Zhou, Qian
    FRACTAL AND FRACTIONAL, 2023, 7 (04)
  • [27] On Onsager's type conjecture for the inviscid Boussinesq equations
    Miao, Changxing
    Nie, Yao
    Ye, Weikui
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (07)
  • [28] Energy conservation of weak solutions for the incompressible Euler equations via vorticity
    Liu, Jitao
    Wang, Yanqing
    Ye, Yulin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 372 : 254 - 279
  • [29] Energy conservation for the weak solutions to the incompressible inhomogeneous Euler–Korteweg equations
    Zhipeng Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [30] Conservation of energy for the Euler–Korteweg equations
    Tomasz Dębiec
    Piotr Gwiazda
    Agnieszka Świerczewska-Gwiazda
    Athanasios Tzavaras
    Calculus of Variations and Partial Differential Equations, 2018, 57