Onsager’s Conjecture on the Energy Conservation for Solutions of Euler Equations in Bounded Domains

被引:0
|
作者
Quoc-Hung Nguyen
Phuoc-Tai Nguyen
机构
[1] Scuola Normale Superiore,Faculty of Science, Department of Mathematics and Statistics
[2] Masaryk University,undefined
来源
关键词
Onsager’s conjecture; Energy conservation; Euler equation; 35Q31; 76B03;
D O I
暂无
中图分类号
学科分类号
摘要
The Onsager’s conjecture has two parts: conservation of energy, if the exponent is larger than 1 / 3, and the possibility of dissipative Euler solutions, if the exponent is less than or equal to 1 / 3. The paper proves half of the conjecture, the conservation part, in bounded domains.
引用
收藏
页码:207 / 213
页数:6
相关论文
共 50 条
  • [1] Onsager's Conjecture on the Energy Conservation for Solutions of Euler Equations in Bounded Domains
    Quoc-Hung Nguyen
    Phuoc-Tai Nguyen
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (01) : 207 - 213
  • [2] Onsager’s Conjecture for the Incompressible Euler Equations in Bounded Domains
    Claude Bardos
    Edriss S. Titi
    Archive for Rational Mechanics and Analysis, 2018, 228 : 197 - 207
  • [3] Onsager's Conjecture for the Incompressible Euler Equations in Bounded Domains
    Bardos, Claude
    Titi, Edriss S.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 228 (01) : 197 - 207
  • [4] Energy conservation and Onsager's conjecture for the Euler equations
    Cheskidov, A.
    Constantin, P.
    Friedlander, S.
    Shvydkoy, R.
    NONLINEARITY, 2008, 21 (06) : 1233 - 1252
  • [5] On energy conservation for the hydrostatic Euler equations: an Onsager conjecture
    Boutros, Daniel W.
    Markfelder, Simon
    Titi, Edriss S.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (08)
  • [6] On energy conservation for the hydrostatic Euler equations: an Onsager conjecture
    Daniel W. Boutros
    Simon Markfelder
    Edriss S. Titi
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [7] ONSAGER CONJECTURE ON THE ENERGY-CONSERVATION FOR SOLUTIONS OF EULER EQUATION
    CONSTANTIN, P
    TITI, ES
    WEINAN, F
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) : 207 - 209
  • [8] Onsager's energy conservation for inhomogeneous Euler equations
    Chen, Robin Ming
    Yu, Cheng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 131 : 1 - 16
  • [9] Onsager's conjecture in bounded domains for the conservation of entropy and other companion laws
    Bardos, C.
    Gwiazda, P.
    Swierczewska-Gwiazda, A.
    Titi, E. S.
    Wiedemann, E.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2230):
  • [10] Onsager's energy conservation of solutions for density-dependent Euler equations in Td
    Wu, Xinglong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 233