An Estimate for the Entropy of Hamiltonian Flows

被引:0
|
作者
F. C. Chittaro
机构
[1] SISSA-ISAS,
关键词
37C10; 53D10; 58F11; Jacobi curve; Hamiltonian; curvature; dynamical entropy;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a generalization to Hamiltonian flows on symplectic manifolds of the estimate proved by Ballmann and Wojtkovski in [4] for the dynamical entropy of the geodesic flow on a compact Riemannian manifold of nonpositive sectional curvature. Given such a Riemannian manifold M, Ballmann and Wojtkovski proved that the dynamical entropy hμ of the geodesic flow on M satisfies the inequality\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{\mu } \geqslant {\int\limits_{SM} {{\text{Tr}}{\sqrt { - K{\left( v \right)}} }d\mu {\left( v \right)}} },$\end{document}where v is a unit vector in TpM if p is a point in M, SM is the unit tangent bundle on M, K(v) is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K{\left( \upsilon \right)} = {\user1{\mathcal{R}}}{\left( { \cdot ,\upsilon } \right)}\upsilon $\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\user1{\mathcal{R}}}$\end{document} is the Riemannian curvature of M, and μ is the normalized Liouville measure on SM.
引用
收藏
页码:55 / 67
页数:12
相关论文
共 50 条
  • [21] On the Entropy Flows to Disorder
    Dodson, C. T. J.
    CHAOTIC SYSTEMS: THEORY AND APPLICATIONS, 2010, : 75 - 84
  • [22] Entropy of flows, revisited
    Sun, WX
    Vargas, E
    BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA, 1999, 30 (03): : 315 - 333
  • [23] On the Entropy of Conservative Flows
    Bessa, Mario
    Varandas, Paulo
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2011, 10 (01) : 11 - 22
  • [24] On the Entropy of Conservative Flows
    Mário Bessa
    Paulo Varandas
    Qualitative Theory of Dynamical Systems, 2011, 10 : 11 - 22
  • [25] ENTROPY OF EXPANSIVE FLOWS
    THOMAS, RF
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 : 611 - 625
  • [26] Entropy of flows, revisited
    Wenxiang Sun
    Edson Vargas
    Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 1999, 30 : 315 - 333
  • [27] A lower estimate for entropy numbers
    Kühn, T
    JOURNAL OF APPROXIMATION THEORY, 2001, 110 (01) : 120 - 124
  • [28] A LARGER ESTIMATE OF THE ENTROPY OF THE UNIVERSE
    Egan, Chas A.
    Lineweaver, Charles H.
    ASTROPHYSICAL JOURNAL, 2010, 710 (02): : 1825 - 1834
  • [29] The Burau estimate for the entropy of a braid
    Band, Gavin
    Boyland, Philip
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 1345 - 1378
  • [30] ESTIMATE FOR REPLACEMENT ENTROPY OF MICROCRYSTALLITES
    ABRAHAM, FF
    CHEMICAL PHYSICS LETTERS, 1972, 15 (02) : 287 - +