Resistive switching in nano-structures

被引:0
|
作者
V. G. Karpov
D. Niraula
机构
[1] University of Toledo,Department of Physics and Astronomy
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Solid state memory and switching devices aimed at replacing the flash memory technology operate by switching from the high to low resistance when conductive filaments are created in response to the electric pulse. The filaments are identified with either structurally different protrusions or purely electronic conductive pathways. The former can appear via the field induced nucleation (FIN), while the latter do not require phase transformations and are attributed to certain types of temperature and bias dependent conductivity. The existing understanding of those processes ignores features related to extremely small linear sizes of nano-structures. Such are, for example, the device sizes smaller than critical nucleation radii, and/or the electron energy relaxation lengths exceeding the structure dimensions. This paper develops a theory of switching under nano-size conditions. We show how the structure thinness can make FIN a truly threshold phenomenon possible only for voltage (not the field) exceeding a certain critical value. We predict the possibility of threshold switching without memory for certain thickness dependent voltages. The thermal runaway mechanism of electronic switching is described analytically leading to results consistent with the published numerical modeling. Our predictions offer possible experimental verifications deciding between FIN and thermal runaway switching.
引用
收藏
相关论文
共 50 条
  • [21] MAGNETIC VORTEX BEHAVIOR IN NANO-STRUCTURES
    Costa, B. V.
    Rocha, J. C. S.
    Coura, P. Z.
    Leonel, S. A.
    Toscano, D.
    Dias, R. A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2012, 23 (08):
  • [22] Annealing of sputtered gold nano-structures
    Svorcik, V.
    Kvitek, O.
    Lyutakov, O.
    Siegel, J.
    Kolska, Z.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 102 (03): : 747 - 751
  • [23] Electrodeposition of Ni micro/nano-structures
    NIU LianPing 1*
    2 National Laboratory of Superhard Materials and Institute of Atomic and Molecular Physics
    Science Bulletin, 2011, (32) : 3426 - 3430
  • [24] Understanding Conduction Mechanisms in Nano-Structures
    Gehman, V. H., Jr.
    Long, K. J.
    Santiago, F.
    Boulais, K. A.
    Rayms-Keller, A.
    NSTI NANOTECH 2008, VOL 3, TECHNICAL PROCEEDINGS: MICROSYSTEMS, PHOTONICS, SENSORS, FLUIDICS, MODELING, AND SIMULATION, 2008, : 409 - 412
  • [25] Nano-structures of two new lead(II) coordination polymers: New precursors for preparation of PbS nano-structures
    Aslani, Alireza
    Morsali, Ali
    Zeller, Matthias
    SOLID STATE SCIENCES, 2008, 10 (11) : 1591 - 1597
  • [26] Electrodeposition of Ni micro/nano-structures
    Niu LianPing
    Ye DanDan
    Li Feng
    Zhang MingZhe
    CHINESE SCIENCE BULLETIN, 2011, 56 (32): : 3426 - 3430
  • [27] Optical impedance of metallic nano-structures
    Mazilu, M.
    Dholakia, K.
    OPTICS EXPRESS, 2006, 14 (17): : 7709 - 7722
  • [28] On the independent sets of some nano-structures
    Alikhani, S.
    Jafari, F.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2012, 6 (9-10): : 911 - 913
  • [29] Quantum Mechanical Simulations of Nano-Structures and Nano-Devices
    Jiang, Xiang-Wei
    Deng, Hui-Xiong
    Li, Shu-Shen
    Luo, Jun-Wei
    Wang, Lin-Wang
    2012 12TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD), 2012, : 101 - +
  • [30] Synthesis and perspectives of complex crystalline nano-structures
    Kudera, Stefan
    Carbone, Luigi
    Zanella, Marco
    Cingolani, Roberto
    Parak, Wolfgang J.
    Manna, Liberato
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2006, 203 (06): : 1329 - 1336