P-splines regression smoothing and difference type of penalty

被引:0
|
作者
I. Gijbels
A. Verhasselt
机构
[1] Katholieke Universiteit Leuven,Department of Mathematics and Leuven Statistics Research Center (LStat)
来源
Statistics and Computing | 2010年 / 20卷
关键词
Akaike’s information criterion; B-splines; Difference penalty; Generalized linear modelling; Penalized regression; Smoothing;
D O I
暂无
中图分类号
学科分类号
摘要
P-splines regression provides a flexible smoothing tool. In this paper we consider difference type penalties in a context of nonparametric generalized linear models, and investigate the impact of the order of the differencing operator. Minimizing Akaike’s information criterion we search for a possible best data-driven value of the differencing order. Theoretical derivations are established for the normal model and provide insights into a possible ‘optimal’ choice of the differencing order and its interrelation with other parameters. Applications of the selection procedure to non-normal models, such as Poisson models, are given. Simulation studies investigate the performance of the selection procedure and we illustrate its use on real data examples.
引用
收藏
页码:499 / 511
页数:12
相关论文
共 50 条
  • [31] Non-parametric regression on compositional covariates using Bayesian P-splines
    Bruno, Francesca
    Greco, Fedele
    Ventrucci, Massimo
    STATISTICAL METHODS AND APPLICATIONS, 2016, 25 (01): : 75 - 88
  • [32] Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models
    Jullion, Astrid
    Lambert, Philippe
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (05) : 2542 - 2558
  • [33] P-SPLINES USING DERIVATIVE INFORMATION
    Calderon, Christopher P.
    Martinez, Josue G.
    Carroll, Raymond J.
    Sorensen, Danny C.
    MULTISCALE MODELING & SIMULATION, 2010, 8 (04): : 1562 - 1580
  • [34] Quantile regression with monotonicity restrictions using P-splines and the L1-norm
    Bollaerts, Kaatje
    Eilers, Paul H. C.
    Aerts, Marc
    STATISTICAL MODELLING, 2006, 6 (03) : 189 - 207
  • [35] On constrained smoothing and out-of-range prediction using P-splines: A conic optimization approach
    Navarro-Garcia, Manuel
    Guerrero, Vanesa
    Durban, Maria
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 441
  • [36] Flexible Bayesian P-splines for smoothing age-specific spatio-temporal mortality patterns
    Goicoa, T.
    Adin, A.
    Etxeberria, J.
    Militino, A. F.
    Ugarte, M. D.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (02) : 384 - 403
  • [37] REML for Two-Dimensional P-Splines
    Boer, Martin P.
    DEVELOPMENTS IN STATISTICAL MODELLING, IWSM 2024, 2024, : 1 - 6
  • [38] Smoothing Two-dimensional Malaysian Mortality Data using P-splines Indexed by Age and Year
    Kamaruddin, Halim Shukri
    Ismail, Noriszura
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 487 - 496
  • [39] A multi-country comparison of stochastic models of breast cancer mortality with P-splines smoothing approach
    Mubarik, Sumaira
    Hu, Ying
    Yu, Chuanhua
    BMC MEDICAL RESEARCH METHODOLOGY, 2020, 20 (01)
  • [40] FAVARDS SOLUTION IS LIMIT OF WK,P-SPLINES
    CHUI, CK
    SMITH, PW
    WARD, JD
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 220 (JUN) : 299 - 305