P-splines regression smoothing and difference type of penalty

被引:0
|
作者
I. Gijbels
A. Verhasselt
机构
[1] Katholieke Universiteit Leuven,Department of Mathematics and Leuven Statistics Research Center (LStat)
来源
Statistics and Computing | 2010年 / 20卷
关键词
Akaike’s information criterion; B-splines; Difference penalty; Generalized linear modelling; Penalized regression; Smoothing;
D O I
暂无
中图分类号
学科分类号
摘要
P-splines regression provides a flexible smoothing tool. In this paper we consider difference type penalties in a context of nonparametric generalized linear models, and investigate the impact of the order of the differencing operator. Minimizing Akaike’s information criterion we search for a possible best data-driven value of the differencing order. Theoretical derivations are established for the normal model and provide insights into a possible ‘optimal’ choice of the differencing order and its interrelation with other parameters. Applications of the selection procedure to non-normal models, such as Poisson models, are given. Simulation studies investigate the performance of the selection procedure and we illustrate its use on real data examples.
引用
收藏
页码:499 / 511
页数:12
相关论文
共 50 条
  • [1] P-splines regression smoothing and difference type of penalty
    Gijbels, I.
    Verhasselt, A.
    STATISTICS AND COMPUTING, 2010, 20 (04) : 499 - 511
  • [2] Practical Smoothing: The Joys of P-splines
    Podgorski, Krzysztof
    INTERNATIONAL STATISTICAL REVIEW, 2022, 90 (01) : 191 - 192
  • [3] Practical Smoothing: The Joys of P-splines
    Podgorski, Krzysztof
    INTERNATIONAL STATISTICAL REVIEW, 2022,
  • [4] Flexible smoothing with P-splines: a unified approach
    Currie, I. D.
    Durban, M.
    STATISTICAL MODELLING, 2002, 2 (04) : 333 - 349
  • [5] Sketching for Kronecker Product Regression and P-splines
    Diao, Huaian
    Song, Zhao
    Sun, Wen
    Woodruff, David P.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [6] Spatially adaptive Bayesian penalized regression splines (P-splines)
    Baladandayuthapani, V
    Mallick, BK
    Carroll, RJ
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (02) : 378 - 394
  • [7] P-splines with an l1 penalty for repeated measures
    Segal, Brian D.
    Elliott, Michael R.
    Braun, Thomas
    Jiang, Hui
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 3554 - 3600
  • [8] MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines
    Camarda, Carlo G.
    JOURNAL OF STATISTICAL SOFTWARE, 2012, 50 (01): : 1 - 24
  • [9] Simple and multiple P-splines regression with shape constraints
    Bollaerts, Kaatje
    Eilers, Paul H. C.
    van Mechelen, Iven
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2006, 59 : 451 - 469
  • [10] Gradient-based smoothing parameter estimation for neural P-splines
    Dammann, Lea M.
    Freitag, Marei
    Thielmann, Anton
    Saefken, Benjamin
    COMPUTATIONAL STATISTICS, 2025,