Hardy inequalities for weighted Dirac operator

被引:0
|
作者
Kyril Adimurthi
机构
[1] Tata Institute of Fundamental Research,Centre of Applicable Mathematics
[2] Uppsala University,Department of Mathematics
来源
关键词
Dirac operator; Hardy inequality; Optimal constants; Primary 35Q40; 35Q75; 46N50; 81Q10; Secondary 35P05; 47A05; 47F05;
D O I
暂无
中图分类号
学科分类号
摘要
An inequality of Hardy type is established for quadratic forms involving Dirac operator and a weight r−b for functions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}. The exact Hardy constant cb = cb(n) is found and generalized minimizers are given. The constant cb vanishes on a countable set of b, which extends the known case n = 2, b = 0 which corresponds to the trivial Hardy inequality in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^2}$$\end{document}. Analogous inequalities are proved in the case cb = 0 under constraints and, with error terms, for a bounded domain.
引用
收藏
页码:241 / 251
页数:10
相关论文
共 50 条