Alternating segment explicit-implicit and implicit-explicit parallel difference method for the nonlinear Leland equation

被引:0
|
作者
Weijuan Zhao
Xiaozhong Yang
Lifei Wu
机构
[1] North China Electric Power University,School of Mathematics and Physics
关键词
nonlinear Leland equation; alternating segment explicit-implicit (ASE-I) scheme; alternating segment implicit-explicit (ASI-E) scheme; parallel computing; numerical experiments; 65M06; 65Y05;
D O I
暂无
中图分类号
学科分类号
摘要
The nonlinear Leland equation is a Black-Scholes option pricing model with transaction costs and the research of its numerical methods has theoretical significance and practical application value. This paper constructs a kind of difference scheme with intrinsic parallelism-alternating segment explicit-implicit (ASE-I) scheme and alternating segment implicit-explicit (ASI-E) scheme based on the improved Saul’yev asymmetric scheme, explicit-implicit (E-I) scheme, and implicit-explicit (I-E) scheme. Theoretical analysis demonstrates that this kind of scheme is unconditional stable parallel difference scheme. Numerical experiments show that the computational accuracy of this kind of scheme is very close to the classical Crank-Nicolson (C-N) scheme and the alternating segment Crank-Nicolson (ASC-N) scheme. But the computational time of this kind of scheme can save nearly 81% for the classical C-N scheme and save nearly 40% for the ASC-N scheme. Numerical experiments confirm the theoretical analysis, showing the higher efficiency of this kind of scheme given by this paper for solving a nonlinear Leland equation.
引用
收藏
相关论文
共 50 条
  • [31] An Explicit-Implicit Spectral Element Scheme for the Nonlinear Space Fractional Schrodinger Equation
    Liu, Zeting
    Yin, Baoli
    Liu, Yang
    FRACTAL AND FRACTIONAL, 2023, 7 (09)
  • [32] Implicit-explicit parallel asynchronous solver of parabolic PDES
    Amitai, D
    Averbuch, A
    Israeli, M
    Itzikowitz, S
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (04): : 1366 - 1404
  • [33] ATTITUDES AND THE IMPLICIT-EXPLICIT DUALISM
    Gawronski, Bertram
    Brannon, Skylar M.
    HANDBOOK OF ATTITUDES, VOL 1: BASIC PRINCIPLES, 2ND EDITION, 2019, : 158 - 196
  • [34] Time and the implicit-explicit continuum
    Boucher, J
    BEHAVIORAL AND BRAIN SCIENCES, 1999, 22 (05) : 758 - +
  • [35] An alternating-direction hybrid implicit-explicit finite-difference time-domain method for the Schrödinger equation
    Decleer, Pieter
    Van Londersele, Arne
    Rogier, Hendrik
    Vande Ginste, Dries
    Journal of Computational and Applied Mathematics, 2022, 403
  • [36] Implicit-explicit time integration for the immersed wave equation
    Fassbender, Christian
    Buerchner, Tim
    Kopp, Philipp
    Rank, Ernst
    Kollmannsberger, Stefan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 163 : 1 - 13
  • [37] IMPLICIT-EXPLICIT DIFFERENCE SCHEMES FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONSMOOTH SOLUTIONS
    Cao, Wanrong
    Zeng, Fanhai
    Zhang, Zhongqiang
    Karniadakis, George Em
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : A3070 - A3093
  • [38] IMPLICIT-EXPLICIT MULTISTEP METHODS FOR NONLINEAR PARABOLIC EQUATIONS
    Akrivis, Georgios
    MATHEMATICS OF COMPUTATION, 2013, 82 (281) : 45 - 68
  • [39] DISCRETIZATION OF BOLTZMANN EQUATION USING THE FINITE VOLUME METHOD AND EXPLICIT-IMPLICIT SCHEMES
    Volkov, K. N.
    Emelyanov, V. N.
    Pustovalov, A. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02): : 942 - 960
  • [40] Implicit-explicit finite-difference lattice boltzmann method for compressible flows
    Wang, Y.
    He, Y. L.
    Zhao, T. S.
    Tang, G. H.
    Tao, W. Q.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (12): : 1961 - 1983