Elliptic Equations and Systems with Subcritical and Critical Exponential Growth Without the Ambrosetti–Rabinowitz Condition

被引:0
|
作者
Nguyen Lam
Guozhen Lu
机构
[1] Wayne State University,Department of Mathematics
来源
关键词
Mountain pass theorem; Critical point theory; Ambrosetti–Rabinowitz condition; Moser–Trudinger inequality; Subcritical and critical exponential growth; 35B38; 35J92; 35B33; 35J62;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence of nontrivial nonnegative solutions to a class of elliptic equations and systems which do not satisfy the Ambrosetti–Rabinowitz (AR) condition where the nonlinear terms are superlinear at 0 and of subcritical or critical exponential growth at ∞. The known results without the AR condition in the literature only involve nonlinear terms of polynomial growth. We will use suitable versions of the Mountain Pass Theorem and Linking Theorem introduced by Cerami (Istit. Lombardo Accad. Sci. Lett. Rend. A, 112(2):332–336, 1978 Ann. Mat. Pura Appl., 124:161–179, 1980). The Moser–Trudinger inequality plays an important role in establishing our results. Our theorems extend the results of de Figueiredo, Miyagaki, and Ruf (Calc. Var. Partial Differ. Equ., 3(2):139–153, 1995) and of de Figueiredo, do Ó, and Ruf (Indiana Univ. Math. J., 53(4):1037–1054, 2004) to the case where the nonlinear term does not satisfy the AR condition. Examples of such nonlinear terms are given in Appendix A. Thus, we have established the existence of nontrivial nonnegative solutions for a wider class of nonlinear terms.
引用
收藏
页码:118 / 143
页数:25
相关论文
共 50 条
  • [31] Variational analysis of anisotropic Schrodinger equations without Ambrosetti-Rabinowitz-type condition
    Afrouzi, G. A.
    Mirzapour, M.
    Radulescu, Vicentiu D.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (01):
  • [32] Quasilinear Problems without the Ambrosetti-Rabinowitz Condition
    Candela, Anna Maria
    Fragnelli, Genni
    Mugnai, Dimitri
    MINIMAX THEORY AND ITS APPLICATIONS, 2021, 6 (02): : 239 - 250
  • [33] HENON ELLIPTIC EQUATIONS IN R2 WITH SUBCRITICAL AND CRITICAL EXPONENTIAL GROWTH
    Do O, Joao Marcos
    Barboza, Eudes Mendes
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2020, 33 (1-2) : 1 - 42
  • [34] Homoclinic Solutions of Nonlinear Laplacian Difference Equations Without Ambrosetti-Rabinowitz Condition
    Nastasi, Antonella
    Tersian, Stepan
    Vetro, Calogero
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (03) : 712 - 718
  • [35] Homoclinic Solutions of Nonlinear Laplacian Difference Equations Without Ambrosetti-Rabinowitz Condition
    Antonella Nastasi
    Stepan Tersian
    Calogero Vetro
    Acta Mathematica Scientia, 2021, 41 : 712 - 718
  • [36] Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti-Rabinowitz Type Conditions
    Juarez Hurtado, E.
    Miyagaki, O. H.
    Rodrigues, R. S.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (02) : 405 - 432
  • [37] On the Double Phase Variational Problems Without Ambrosetti–Rabinowitz Condition
    Jie Yang
    Haibo Chen
    Senli Liu
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 257 - 269
  • [38] A quasilinear problem without the Ambrosetti-Rabinowitz-type condition
    Iturriaga, Leonelo
    Lorca, Sebastian
    Ubilla, Pedro
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 : 391 - 398
  • [39] THE EXISTENCE OF NONTRIVIAL SOLUTIONS TO A SEMILINEAR ELLIPTIC SYSTEM ON R N WITHOUT THE AMBROSETTI-RABINOWITZ CONDITION
    李工宝
    王春花
    Acta Mathematica Scientia, 2010, 30 (06) : 1917 - 1936
  • [40] Variational analysis of anisotropic Schrödinger equations without Ambrosetti–Rabinowitz-type condition
    G. A. Afrouzi
    M. Mirzapour
    Vicenţiu D. Rădulescu
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69